ABSTRACT
Due to the widespread use of shellfish ingredients in food products, accurate food labelling is urgently needed for consumers with shellfish allergies. Most crustacean allergen detection systems target the immunorecognition of the allergenic protein tropomyosin. However, this mode of detection may be affected by an origin-dependent protein composition. This study determined if the geographic location of capture, or aquaculture, influenced the allergenic protein profiles of Black Tiger Shrimp (Penaeus monodon), one of the most farmed and consumed shrimp species worldwide. Protein composition was analysed in shrimp from nine different locations in the Asia-Pacific by SDS-PAGE, immunoblotting, and mass spectrometry. Ten of the twelve known shrimp allergens were detected, but with considerable differences between locations. Sarcoplasmic calcium-binding protein, myosin light chain, and tropomyosin were the most abundant allergens in all locations. Hemocyanin-specific antibodies could identify up to six different isoforms, depending on the location of origin. Similarly, tropomyosin abundance varied by up to 13 times between locations. These findings suggest that allergen abundance may be related to shrimp origin and, thus, shrimp origin might directly impact the readout of commercial crustacean allergen detection kits, most of which target tropomyosin, and this should be considered in food safety assessments.
Subject(s)
Allergens , Food Safety , Penaeidae , Tropomyosin , Animals , Allergens/analysis , Allergens/immunology , Penaeidae/immunology , Tropomyosin/immunology , Shellfish Hypersensitivity/immunology , Shellfish/analysis , Shellfish/adverse effectsABSTRACT
Background: People living in Australian cities face increased mortality risks from exposure to extreme air pollution events due to bushfires and dust storms. However, the burden of mortality attributable to exceptional PM2.5 levels has not been well characterised. We assessed the burden of mortality due to PM2.5 pollution events in Australian capital cities between 2001 and 2020. Methods: For this health impact assessment, we obtained data on daily counts of deaths for all non-accidental causes and ages from the Australian National Vital Statistics Register. Daily concentrations of PM2.5 were estimated at a 5 km grid cell, using a Random Forest statistical model of data from air pollution monitoring sites combined with a range of satellite and land use-related data. We calculated the exceptional PM2.5 levels for each extreme pollution exposure day using the deviation from a seasonal and trend loess decomposition model. The burden of mortality was examined using a relative risk concentration-response function suggested in the literature. Findings: Over the 20-year study period, we estimated 1454 (95 % CI 987, 1920) deaths in the major Australian cities attributable to exceptional PM2.5 exposure levels. The mortality burden due to PM2.5 exposure on extreme pollution days was considerable. Variations were observed across Australia. Despite relatively low daily PM2.5 levels compared to global averages, all Australian cities have extreme pollution exposure days, with PM2.5 concentrations exceeding the World Health Organisation Air Quality Guideline standard for 24-h exposure. Our analysis results indicate that nearly one-third of deaths from extreme air pollution exposure can be prevented with a 5 % reduction in PM2.5 levels on days with exceptional pollution. Interpretation: Exposure to exceptional PM2.5 events was associated with an increased mortality burden in Australia's cities. Policies and coordinated action are needed to manage the health risks of extreme air pollution events due to bushfires and dust storms under climate change.
ABSTRACT
Seafood elemental profiling (SEP) is the quantification of a range of elements in seafood products and may serve in addressing questions of seafood provenance and quality. Traditional methods for analyzing soft tissue present several limitations for the industry-level use of SEP. Portable handheld X-ray fluorescence (pXRF) analysis is a promising alternative to conventional methods; however, its application for biological analysis has not been fully established. Intact giant tiger prawn (Penaeus monodon) abdomens were analyzed with a Vanta M series XRF portable analyzer following a novel soft tissue protocol. Exploratory statistics (principal component analysis, nonmetric multidimensional scaling, and canonical discriminant analysis), as well as random forest models, have been implemented with pXRF profiles, yielding 81% accuracy when assigning the geographical origin of P. monodon. The results of this study highlight that SEP via pXRF is a viable industry-level analysis, and its application will depend on improved instrument calibration to account for fluctuating wetness factors that are influenced by cooking, storage, and other pre- and post-harvest treatments.
ABSTRACT
As the demand for seafood increases, so does the incidence of seafood fraud. Confirming provenance of seafood is important to combat fraudulent labelling but requires a database that contains the isotopic and elemental "fingerprints" of authentic seafood samples. Local isotopic and elemental databases can be scaled up or combined with other databases to increase the spatial and species coverage to create a larger database. This study showcases the use of isotopic and elemental fingerprints of the black tiger prawn (Penaeus monodon) to develop a database that can be used to securely store the data necessary for determining provenance. The utility of this database was tested through querying and building seven different datasets that were used to develop models to determine the provenance of P. monodon. The models built using the data retrieved from the database demonstrated that the provenance of P. monodon could be determined with >80% accuracy. As the database was developed using MySQL, it can be scaled up to include additional regions, species, or methodologies depending on the needs of the users. Combining the database with methods of determining provenance will provide regulatory bodies and the seafood industry with another provenance tool to combat fraudulent seafood labelling.
ABSTRACT
Determination of the elemental composition of soft biological tissue is a time-consuming and tedious process when using traditional analytical techniques. In this method, micro X-ray fluorescence (µXRF) via Itrax, a scanning instrument, was used to determine elemental abundance at a resolution of 200 µm. Itrax µXRF was initially designed for elemental profiling of geological cores, and the capability of this technique was extended to soft biological tissue samples. The samples were dried and ground into a fine powder before analysis. The scanner generates elemental values as counts per 1 mm and these values are standardised to obtain the relative elemental abundance of the elements present in the samples. The acquired data can be used for environmental and biological research. â¢No literature could be found whereby the capability of Itrax µXRF has been extended to soft biological tissue samples.â¢The major advantages Itrax has over conventional methods is that it is a simultaneous technique which allows data to be acquired for over 30 elements at once with minimal sample preparation.â¢It is a non-destructive process where the samples can be re-used for additional analyses if necessary; this is especially useful when there is only a limited amount of sample available for other analyses.