Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(14): e2217019121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38547062

ABSTRACT

Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission. This force-induced fission involves DRP1/MFF and endoplasmic reticulum tubule wrapping. It redistributes mitochondrial DNA, producing mitochondrial fragments with or without mitochondrial DNA for different fates. Moreover, tensile force can decouple outer and inner mitochondrial membranes, pulling out matrix-excluded tubule segments. Subsequent tail-autotomy fission separates the matrix-excluded tubule segments into matrix-excluded mitochondrial-derived vesicles (MDVs) which recruit Parkin and LC3B, indicating the unique role of tail-autotomy fission in segregating only outer membrane components for mitophagy. Sustained force promotes fission and MDV biogenesis more effectively than transient one. Our results uncover a mechanistically and functionally distinct type of fission and unveil the role of tensile forces in modulating fission and MDV biogenesis for quality control, underscoring the heterogeneity of fission and mechanoregulation of mitochondrial dynamics.


Subject(s)
Membrane Proteins , Mitochondrial Dynamics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Mitochondria/genetics , DNA, Mitochondrial , Quality Control , Dynamins/genetics
2.
Biochemistry ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008055

ABSTRACT

Aromatic amino acid decarboxylases (AAADs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that catalyze the decarboxylation of aromatic amino acid l-amino acids. In plants, apart from canonical AAADs that catalyze the straightforward decarboxylation reaction, other members of the AAAD family function as aromatic acetaldehyde synthases (AASs) and catalyze more complex decarboxylation-dependent oxidative deamination. The interconversion between a canonical AAAD and an AAS can be achieved by a single tyrosine-phenylalanine mutation in the large catalytic loop of the enzymes. In this work, we report implicit ligand sampling (ILS) calculations of the canonical l-tyrosine decarboxylase from Papaver somniferum (PsTyDC) that catalyzes l-tyrosine decarboxylation and its Y350F mutant that instead catalyzes the decarboxylation-dependent oxidative deamination of the same substrate. Through comparative analysis of the resulting three-dimensional (3D) O2 free energy profiles, we evaluate the impact of the key tyrosine/phenylalanine mutation on oxygen accessibility to both the wild type and Y350F mutant of PsTyDC. Additionally, using molecular dynamics (MD) simulations of the l-tryptophan decarboxylase from Catharanthus roseus (CrTDC), we further investigate the dynamics of a large catalytic loop known to be indispensable to all AAADs. Results of our ILS and MD calculations shed new light on how key structural elements and loop conformational dynamics underlie the enzymatic functions of different members of the plant AAAD family.

3.
Biochem J ; 477(20): 3935-3949, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32955089

ABSTRACT

The unconventional G-protein OsYchF1 plays regulatory roles in plant defense and abiotic stress responses. We have previously resolved the crystal structures of OsYchF1 and its plant-specific regulator, OsGAP1, and determined the residues on OsGAP1 that are essential for its binding to OsYchF1. In this study, we employed site-directed mutagenesis to identify four critical residues on the TGS domain of OsYchF1 that are critical for its binding to OsGAP1. We also generated a docking model of the OsYchF1 : OsGAP1 complex to dissect the molecular basis of their interactions. Our finding not only reveals the roles of the key interacting residues controlling the binding between OsYchF1 and OsGAP1, but also provides a working model on the potential regulatory mechanism mediated by a TGS domain, particularly in the class of GTPase of the OBG family.


Subject(s)
Arabidopsis/metabolism , C2 Domains/genetics , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , GTPase-Activating Proteins/chemistry , Oryza/chemistry , Plant Proteins/chemistry , Amino Acid Sequence , GTP-Binding Proteins/metabolism , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Models, Structural , Molecular Docking Simulation , Mutagenesis, Site-Directed , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Binding , Protein Domains/genetics , Real-Time Polymerase Chain Reaction , Recombinant Proteins , Stress, Physiological/genetics
4.
Entropy (Basel) ; 21(4)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-33267066

ABSTRACT

We explicitly present a generalized quantum teleportation of a two-qubit entangled state protocol, which uses two pairs of partially entangled particles as quantum channel. We verify that the optimal probability of successful teleportation is determined by the smallest superposition coefficient of these partially entangled particles. However, the two-qubit entangled state to be teleported will be destroyed if teleportation fails. To solve this problem, we show a more sophisticated probabilistic resumable quantum teleportation scheme of a two-qubit entangled state, where the state to be teleported can be recovered by the sender when teleportation fails. Thus the information of the unknown state is retained during the process. Accordingly, we can repeat the teleportion process as many times as one has available quantum channels. Therefore, the quantum channels with weak entanglement can also be used to teleport unknown two-qubit entangled states successfully with a high number of repetitions, and for channels with strong entanglement only a small number of repetitions are required to guarantee successful teleportation.

SELECTION OF CITATIONS
SEARCH DETAIL