Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Immunity ; 54(6): 1338-1351.e9, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33862015

ABSTRACT

Despite advances in single-cell multi-omics, a single stem or progenitor cell can only be tested once. We developed clonal multi-omics, in which daughters of a clone act as surrogates of the founder, thereby allowing multiple independent assays per clone. With SIS-seq, clonal siblings in parallel "sister" assays are examined either for gene expression by RNA sequencing (RNA-seq) or for fate in culture. We identified, and then validated using CRISPR, genes that controlled fate bias for different dendritic cell (DC) subtypes. This included Bcor as a suppressor of plasmacytoid DC (pDC) and conventional DC type 2 (cDC2) numbers during Flt3 ligand-mediated emergency DC development. We then developed SIS-skew to examine development of wild-type and Bcor-deficient siblings of the same clone in parallel. We found Bcor restricted clonal expansion, especially for cDC2s, and suppressed clonal fate potential, especially for pDCs. Therefore, SIS-seq and SIS-skew can reveal the molecular and cellular mechanisms governing clonal fate.


Subject(s)
Dendritic Cells/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Animals , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Female , Gene Expression/genetics , HEK293 Cells , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Stem Cells/metabolism
2.
Nat Methods ; 20(11): 1810-1821, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783886

ABSTRACT

The lack of benchmark data sets with inbuilt ground-truth makes it challenging to compare the performance of existing long-read isoform detection and differential expression analysis workflows. Here, we present a benchmark experiment using two human lung adenocarcinoma cell lines that were each profiled in triplicate together with synthetic, spliced, spike-in RNAs (sequins). Samples were deeply sequenced on both Illumina short-read and Oxford Nanopore Technologies long-read platforms. Alongside the ground-truth available via the sequins, we created in silico mixture samples to allow performance assessment in the absence of true positives or true negatives. Our results show that StringTie2 and bambu outperformed other tools from the six isoform detection tools tested, DESeq2, edgeR and limma-voom were best among the five differential transcript expression tools tested and there was no clear front-runner for performing differential transcript usage analysis between the five tools compared, which suggests further methods development is needed for this application.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Benchmarking/methods , RNA , Protein Isoforms
3.
Development ; 149(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36355065

ABSTRACT

Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.


Subject(s)
Mouse Embryonic Stem Cells , X Chromosome Inactivation , Male , Animals , Female , Mice , Cell Differentiation/physiology , X Chromosome Inactivation/genetics , Karyotype
4.
PLoS Pathog ; 19(12): e1011797, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38079450

ABSTRACT

The impact of the host immune environment on parasite transcription and fitness is currently unknown. It is widely held that hookworm infections have an immunomodulatory impact on the host, but whether the converse is true remains unclear. Immunity against adult-stage hookworms is largely mediated by Type 2 immune responses driven by the transcription factor Signal Transducer and Activator of Transcription 6 (STAT6). This study investigated whether serial passage of the rodent hookworm Nippostrongylus brasiliensis in STAT6-deficient mice (STAT6 KO) caused changes in parasites over time. After adaptation to STAT6 KO hosts, N. brasiliensis increased their reproductive output, feeding capacity, energy content, and body size. Using an improved N. brasiliensis genome, we found that these physiological changes corresponded with a dramatic shift in the transcriptional landscape, including increased expression of gene pathways associated with egg production, but a decrease in genes encoding neuropeptides, proteases, SCP/TAPS proteins, and transthyretin-like proteins; the latter three categories have been repeatedly observed in hookworm excreted/secreted proteins (ESPs) implicated in immunosuppression. Although transcriptional changes started to appear in the first generation of passage in STAT6 KO hosts for both immature and mature adult stages, downregulation of the genes putatively involved in immunosuppression was only observed after multiple generations in this immunodeficient environment. When STAT6 KO-adapted N. brasiliensis were reintroduced to a naive WT host after up to 26 generations, this progressive change in host-adaptation corresponded to increased production of inflammatory cytokines by the WT host. Surprisingly, however, this single exposure of STAT6 KO-adapted N. brasiliensis to WT hosts resulted in worms that were morphologically and transcriptionally indistinguishable from WT-adapted parasites. This work uncovers remarkable plasticity in the ability of hookworms to adapt to their hosts, which may present a general feature of parasitic nematodes.


Subject(s)
Ancylostomatoidea , Hookworm Infections , Mice , Animals , Cytokines , Nippostrongylus , STAT6 Transcription Factor/genetics
5.
Nucleic Acids Res ; 51(7): 3240-3260, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36840716

ABSTRACT

Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, a severe respiratory tract infection that is responsible for major economic losses to the swine industry. Many host-adapted bacterial pathogens encode systems known as phasevarions (phase-variable regulons). Phasevarions result from variable expression of cytoplasmic DNA methyltransferases. Variable expression results in genome-wide methylation differences within a bacterial population, leading to altered expression of multiple genes via epigenetic mechanisms. Our examination of a diverse population of A. pleuropneumoniae strains determined that Type I and Type III DNA methyltransferases with the hallmarks of phase variation were present in this species. We demonstrate that phase variation is occurring in these methyltransferases, and show associations between particular Type III methyltransferase alleles and serovar. Using Pacific BioSciences Single-Molecule, Real-Time (SMRT) sequencing and Oxford Nanopore sequencing, we demonstrate the presence of the first ever characterised phase-variable, cytosine-specific Type III DNA methyltransferase. Phase variation of distinct Type III DNA methyltransferase in A. pleuropneumoniae results in the regulation of distinct phasevarions, and in multiple phenotypic differences relevant to pathobiology. Our characterisation of these newly described phasevarions in A. pleuropneumoniae will aid in the selection of stably expressed antigens, and direct and inform development of a rationally designed subunit vaccine against this major veterinary pathogen.


Subject(s)
Actinobacillus pleuropneumoniae , Phase Variation , Animals , Swine , Actinobacillus pleuropneumoniae/genetics , Actinobacillus pleuropneumoniae/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , DNA Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Bacteria/genetics , DNA/metabolism
6.
Proc Natl Acad Sci U S A ; 119(13): e2112240119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35324329

ABSTRACT

SignificanceParamutation involves the transfer of a repressive epigenetic mark between silent and active alleles. It is best known from exceptional non-Mendelian inheritance of conspicuous phenotypes in maize but also in other plants and animals. Recent genomic studies, however, indicate that paramutation may be less exceptional. It may be a consequence of wide-cross hybridization and may contribute to quantitative trait variation or unstable phenotypes in crops. Using the sulfurea (sulf) locus in tomato, we demonstrate that a self-reinforcing feedback loop involving DNA- and histone-methyl transferases CHROMOMETHYLTRANSFERASE3 (CMT3) and KRYPTONITE (KYP) is required for paramutation of sulf and that there is a change in chromatin organization. These findings advance the understanding of non-Mendelian inheritance in plants.


Subject(s)
Solanum lycopersicum , Alleles , Animals , Epigenesis, Genetic , Solanum lycopersicum/genetics , Mutation , Plants/genetics , Zea mays/genetics
7.
Blood ; 140(20): 2127-2141, 2022 11 17.
Article in English | MEDLINE | ID: mdl-35709339

ABSTRACT

Venetoclax (VEN) inhibits the prosurvival protein BCL2 to induce apoptosis and is a standard therapy for chronic lymphocytic leukemia (CLL), delivering high complete remission rates and prolonged progression-free survival in relapsed CLL but with eventual loss of efficacy. A spectrum of subclonal genetic changes associated with VEN resistance has now been described. To fully understand clinical resistance to VEN, we combined single-cell short- and long-read RNA-sequencing to reveal the previously unappreciated scale of genetic and epigenetic changes underpinning acquired VEN resistance. These appear to be multilayered. One layer comprises changes in the BCL2 family of apoptosis regulators, especially the prosurvival family members. This includes previously described mutations in BCL2 and amplification of the MCL1 gene but is heterogeneous across and within individual patient leukemias. Changes in the proapoptotic genes are notably uncommon, except for single cases with subclonal losses of BAX or NOXA. Much more prominent was universal MCL1 gene upregulation. This was driven by an overlying layer of emergent NF-κB (nuclear factor kappa B) activation, which persisted in circulating cells during VEN therapy. We discovered that MCL1 could be a direct transcriptional target of NF-κB. Both the switch to alternative prosurvival factors and NF-κB activation largely dissipate following VEN discontinuation. Our studies reveal the extent of plasticity of CLL cells in their ability to evade VEN-induced apoptosis. Importantly, these findings pinpoint new approaches to circumvent VEN resistance and provide a specific biological justification for the strategy of VEN discontinuation once a maximal response is achieved rather than maintaining long-term selective pressure with the drug.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , NF-kappa B , Drug Resistance, Neoplasm/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Recurrence , Antineoplastic Agents/therapeutic use
8.
Gastroenterology ; 163(6): 1643-1657.e14, 2022 12.
Article in English | MEDLINE | ID: mdl-36037995

ABSTRACT

BACKGROUND & AIMS: Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS: Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS: Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS: We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.


Subject(s)
Necroptosis , Non-alcoholic Fatty Liver Disease , Humans , Female , Male , Mice , Animals , Epigenesis, Genetic , Non-alcoholic Fatty Liver Disease/genetics , Hepatocytes , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Protein Kinases/genetics
9.
PLoS Comput Biol ; 17(10): e1009524, 2021 10.
Article in English | MEDLINE | ID: mdl-34695109

ABSTRACT

A key benefit of long-read nanopore sequencing technology is the ability to detect modified DNA bases, such as 5-methylcytosine. The lack of R/Bioconductor tools for the effective visualization of nanopore methylation profiles between samples from different experimental groups led us to develop the NanoMethViz R package. Our software can handle methylation output generated from a range of different methylation callers and manages large datasets using a compressed data format. To fully explore the methylation patterns in a dataset, NanoMethViz allows plotting of data at various resolutions. At the sample-level, we use dimensionality reduction to look at the relationships between methylation profiles in an unsupervised way. We visualize methylation profiles of classes of features such as genes or CpG islands by scaling them to relative positions and aggregating their profiles. At the finest resolution, we visualize methylation patterns across individual reads along the genome using the spaghetti plot and heatmaps, allowing users to explore particular genes or genomic regions of interest. In summary, our software makes the handling of methylation signal more convenient, expands upon the visualization options for nanopore data and works seamlessly with existing methylation analysis tools available in the Bioconductor project. Our software is available at https://bioconductor.org/packages/NanoMethViz.


Subject(s)
DNA Methylation/genetics , Genomics/methods , Nanopore Sequencing/methods , Sequence Analysis, DNA/methods , Software , Animals , Humans , Mice
10.
PLoS Genet ; 15(9): e1008370, 2019 09.
Article in English | MEDLINE | ID: mdl-31525177

ABSTRACT

Transposable elements in crop plants are the powerful drivers of phenotypic variation that has been selected during domestication and breeding programs. In tomato, transpositions of the LTR (long terminal repeat) retrotransposon family Rider have contributed to various phenotypes of agronomical interest, such as fruit shape and colour. However, the mechanisms regulating Rider activity are largely unknown. We have developed a bioinformatics pipeline for the functional annotation of retrotransposons containing LTRs and defined all full-length Rider elements in the tomato genome. Subsequently, we showed that accumulation of Rider transcripts and transposition intermediates in the form of extrachromosomal DNA is triggered by drought stress and relies on abscisic acid signalling. We provide evidence that residual activity of Rider is controlled by epigenetic mechanisms involving siRNAs and the RNA-dependent DNA methylation pathway. Finally, we demonstrate the broad distribution of Rider-like elements in other plant species, including crops. Our work identifies Rider as an environment-responsive element and a potential source of genetic and epigenetic variation in plants.


Subject(s)
Gene Expression Regulation, Plant/genetics , Retroelements/genetics , Solanum lycopersicum/genetics , Computational Biology/methods , Epigenesis, Genetic/genetics , Evolution, Molecular , Genes, Plant/genetics , Genome, Plant/genetics , Solanum lycopersicum/growth & development , Sequence Analysis, DNA/methods , Terminal Repeat Sequences/genetics
11.
Nucleic Acids Res ; 47(8): e46, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30793194

ABSTRACT

Systematic variation in the methylation of cytosines at CpG sites plays a critical role in early development of humans and other mammals. Of particular interest are regions of differential methylation between parental alleles, as these often dictate monoallelic gene expression, resulting in parent of origin specific control of the embryonic transcriptome and subsequent development, in a phenomenon known as genomic imprinting. Using long-read nanopore sequencing we show that, with an average genomic coverage of ∼10, it is possible to determine both the level of methylation of CpG sites and the haplotype from which each read arises. The long-read property is exploited to characterize, using novel methods, both methylation and haplotype for reads that have reduced basecalling precision compared to Sanger sequencing. We validate the analysis both through comparison of nanopore-derived methylation patterns with those from Reduced Representation Bisulfite Sequencing data and through comparison with previously reported data. Our analysis successfully identifies known imprinting control regions (ICRs) as well as some novel differentially methylated regions which, due to their proximity to hitherto unknown monoallelically expressed genes, may represent new ICRs.


Subject(s)
Genome , Genomic Imprinting , Genotyping Techniques , Haplotypes , Sequence Analysis, DNA/statistics & numerical data , Alleles , Animals , Chromosome Mapping , CpG Islands , DNA Methylation , Embryo, Mammalian/chemistry , Embryo, Mammalian/metabolism , Female , High-Throughput Nucleotide Sequencing , Male , Mice , Placenta/chemistry , Placenta/metabolism , Pregnancy
12.
PLoS Genet ; 12(12): e1006526, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27997534

ABSTRACT

DNA methylation in plants is traditionally partitioned into CG, CHG and CHH contexts (with H any nucleotide but G). By investigating DNA methylation patterns in trinucleotide contexts in four angiosperm species, we show that such a representation hides spatial and functional partitioning of different methylation pathways and is incomplete. CG methylation (mCG) is largely context-independent whereas, at CHG motifs, there is under-representation of mCCG in pericentric regions of A. thaliana and tomato and throughout the chromosomes of maize and rice. In A. thaliana the biased representation of mCCG in heterochromatin is related to specificities of H3K9 methyltransferase SUVH family members. At CHH motifs there is an over-representation of different variant forms of mCHH that, similarly to mCCG hypomethylation, is partitioned into the pericentric regions of the two dicots but dispersed in the monocot chromosomes. The over-represented mCHH motifs in A. thaliana associate with specific types of transposon including both class I and II elements. At mCHH the contextual bias is due to the involvement of various chromomethyltransferases whereas the context-independent CHH methylation in A. thaliana and tomato is mediated by the RNA-directed DNA methylation process that is most active in the gene-rich euchromatin. This analysis therefore reveals that the sequence context of the methylome of plant genomes is informative about the mechanisms associated with maintenance of methylation and the overlying chromatin structure.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/genetics , Genome, Plant , Methyltransferases/genetics , Arabidopsis/genetics , Chromosomes, Plant/genetics , Euchromatin/genetics , Gene Expression Regulation, Plant , Gene Silencing , Heterochromatin/genetics , Nucleotide Motifs/genetics , Oryza/genetics
13.
BMC Genomics ; 19(1): 203, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29554868

ABSTRACT

BACKGROUND: Freakish and rare or the tip of the iceberg? Both phrases have been used to refer to paramutation, an epigenetic drive that contravenes Mendel's first law of segregation. Although its underlying mechanisms are beginning to unravel, its understanding relies only on a few examples that may involve transgenes or artificially generated epialleles. RESULTS: By using DNA methylation of introgression lines as an indication of past paramutation, we reveal that the paramutation-like properties of the H06 locus in hybrids of Solanum lycopersicum and a range of tomato relatives and cultivars depend on the timing of sRNA production and conform to an RNA-directed mechanism. In addition, by scanning the methylomes of tomato introgression lines for shared regions of differential methylation that are absent in the S. lycopersicum parent, we identify thousands of candidate regions for paramutation-like behaviour. The methylation patterns for a subset of these regions segregate with non Mendelian ratios, consistent with secondary paramutation-like interactions to variable extents depending on the locus. CONCLUSION: Together these results demonstrate that paramutation-like epigenetic interactions are common for natural epialleles in tomato, but vary in timing and penetrance.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Gene Silencing , Mutation , RNA, Small Interfering/genetics , Solanum lycopersicum/genetics , Alleles , Transgenes
14.
Mol Plant Microbe Interact ; 30(6): 435-443, 2017 06.
Article in English | MEDLINE | ID: mdl-28296575

ABSTRACT

Viral infection triggers a range of plant responses such as the activation of the RNA interference (RNAi) pathway. The double-stranded RNA binding (DRB) proteins DRB3 and DRB4 are part of this pathway and aid in defending against DNA and RNA viruses, respectively. Using live cell imaging, we show that DRB2, DRB3, and DRB5 relocate from their uniform cytoplasmic distribution to concentrated accumulation in nascent viral replication complexes (VRC) that develop following cell invasion by viral RNA. Inactivation of the DRB3 gene in Arabidopsis by T-DNA insertion rendered these plants less able to repress RNA viral replication. We propose a model for the early stages of virus defense in which DRB2, DRB3, and DRB5 are invasion sensors that relocate to nascent VRC, where they bind to viral RNA and inhibit virus replication.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Luminescent Proteins/metabolism , RNA-Binding Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/virology , Arabidopsis Proteins/genetics , Cucumovirus/physiology , Host-Pathogen Interactions , Luminescent Proteins/genetics , Microscopy, Confocal , Plant Viruses/classification , Plant Viruses/physiology , Plants, Genetically Modified , RNA-Binding Proteins/genetics , Time-Lapse Imaging/methods , Tospovirus/physiology , Tymovirus/physiology
15.
J Exp Bot ; 67(9): 2655-64, 2016 04.
Article in English | MEDLINE | ID: mdl-26957563

ABSTRACT

The sulfurea (sulf) allele is a silent epigenetic variant of a tomato (Solanum lycopersicum) gene affecting pigment production. It is homozygous lethal but, in a heterozygote sulf/+, the wild-type (wt) allele undergoes silencing so that the plants exhibit chlorotic sectors. This transfer of the silenced state between alleles is termed paramutation and is best characterized in maize. To understand the mechanism of paramutation we mapped SULF to the orthologue SLTAB2 of an Arabidopsis gene that, consistent with the pigment deficiency, is involved in the translation of photosystem I. Paramutation of SLTAB2 is linked to an increase in DNA methylation and the production of small interfering RNAs at its promoter. Virus-induced gene silencing of SLTAB2 phenocopies sulf, consistent with the possibility that siRNAs mediate the paramutation of SULFUREA Unlike the maize systems, the paramutagenicity of sulf is not, however, associated with repeated sequences at the region of siRNA production or DNA methylation.


Subject(s)
Genes, Plant/genetics , Solanum lycopersicum/genetics , Alleles , Arabidopsis/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Gene Expression Profiling , Genes, Plant/physiology , Mutation/genetics , Photosystem I Protein Complex/genetics , Zea mays/genetics
16.
Biophys J ; 106(3): 659-66, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24507606

ABSTRACT

Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer's rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼-0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration.


Subject(s)
DNA, Single-Stranded/chemistry , Elasticity , Static Electricity , Base Sequence , Poly A/chemistry
17.
NAR Genom Bioinform ; 5(4): lqad108, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38143957

ABSTRACT

In transcriptomic analyses, it is helpful to keep track of the strand of the RNA molecules. However, the Oxford Nanopore long-read cDNA sequencing protocols generate reads that correspond to either the first or second-strand cDNA, therefore the strandedness of the initial transcript has to be inferred bioinformatically. Reverse transcription and PCR can also introduce artefacts which should be flagged in data pre-processing. Here we introduce Restrander, a lightning-fast and highly accurate tool for restranding and removing artefacts in long-read cDNA sequencing data. Thanks to its C++ implementation, Restrander was faster than Oxford Nanopore Technologies' existing tool Pychopper, and correctly restranded more reads due to its strategy of searching for polyA/T tails in addition to primer sequences from the reverse transcription and template-switch steps. We found that restranding improved the process of visualising and exploring data, and increased the number of novel isoforms discovered by bambu, particularly in regions where sense and anti-sense transcripts co-occur. The artefact detection implemented in Restrander quantifies reads lacking the correct 5' and 3' ends, a useful feature in quality control for library preparation. Restrander is pre-configured for all major cDNA protocols, and can be customised with user-defined primers. Restrander is available at https://github.com/mritchielab/restrander.

18.
Nat Commun ; 14(1): 5466, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749075

ABSTRACT

The interplay between 3D chromatin architecture and gene silencing is incompletely understood. Here, we report a novel point mutation in the non-canonical SMC protein SMCHD1 that enhances its silencing capacity at endogenous developmental targets. Moreover, it also results in enhanced silencing at the facioscapulohumeral muscular dystrophy associated macrosatellite-array, D4Z4, resulting in enhanced repression of DUX4 encoded by this repeat. Heightened SMCHD1 silencing perturbs developmental Hox gene activation, causing a homeotic transformation in mice. Paradoxically, the mutant SMCHD1 appears to enhance insulation against other epigenetic regulators, including PRC2 and CTCF, while depleting long range chromatin interactions akin to what is observed in the absence of SMCHD1. These data suggest that SMCHD1's role in long range chromatin interactions is not directly linked to gene silencing or insulating the chromatin, refining the model for how the different levels of SMCHD1-mediated chromatin regulation interact to bring about gene silencing in normal development and disease.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , Muscular Dystrophy, Facioscapulohumeral , Animals , Mice , Chromatin/genetics , Epigenomics , Gene Silencing , Genes, Homeobox , Muscular Dystrophy, Facioscapulohumeral/genetics , Chromosomal Proteins, Non-Histone/genetics
19.
Methods Mol Biol ; 2484: 333-342, 2022.
Article in English | MEDLINE | ID: mdl-35461461

ABSTRACT

Continuous improvements in long-read sequencing allow us to tackle increasingly big and complex genomes. Here we present the principles of long-read genome assembly, taking Solanum pennellii nanopore sequencing as an example.


Subject(s)
High-Throughput Nucleotide Sequencing , Nanopore Sequencing , Genome, Plant , Sequence Analysis, DNA
20.
Nat Commun ; 13(1): 4295, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879318

ABSTRACT

Parents transmit genetic and epigenetic information to their offspring. Maternal effect genes regulate the offspring epigenome to ensure normal development. Here we report that the epigenetic regulator SMCHD1 has a maternal effect on Hox gene expression and skeletal patterning. Maternal SMCHD1, present in the oocyte and preimplantation embryo, prevents precocious activation of Hox genes post-implantation. Without maternal SMCHD1, highly penetrant posterior homeotic transformations occur in the embryo. Hox genes are decorated with Polycomb marks H2AK119ub and H3K27me3 from the oocyte throughout early embryonic development; however, loss of maternal SMCHD1 does not deplete these marks. Therefore, we propose maternal SMCHD1 acts downstream of Polycomb marks to establish a chromatin state necessary for persistent epigenetic silencing and appropriate Hox gene expression later in the developing embryo. This is a striking role for maternal SMCHD1 in long-lived epigenetic effects impacting offspring phenotype.


Subject(s)
Gene Expression Regulation, Developmental , Genes, Homeobox , Animals , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Embryo, Mammalian/metabolism , Female , Gene Expression , Mice , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL