Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Reprod Dev ; 87(8): 910-924, 2020 08.
Article in English | MEDLINE | ID: mdl-32677283

ABSTRACT

In the dairy industry, the high selection pressure combined with the increased efficiency of assisted reproduction technologies (ART) are leading toward the use of younger females for reproduction purposes, with the aim to reduce the interval between generations. This situation could impair embryo quality, decreasing the success rate of the ART procedures and the values of resulting offspring. Young Holstein heifers (n = 10) were subjected to ovarian stimulation and oocyte collection at 8, 11, and 14 months of age. All the oocytes were fertilized in vitro with semen from one adult bull, generating three pools of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used to compare the DNA methylation status of blastocysts obtained from oocytes collected at 8 versus 14 and 11 versus 14 months of age. Age-related contrast analysis identified 5,787 and 3,658 differentially methylated regions (DMRs) in blastocysts from heifers at 8 versus 14 and 11 versus 14 months of age, respectively. For both contrasts, the DMRs were distributed nonrandomly in the different DNA regions. The DNA from embryos from 8-month-old donors was more hypermethylated, while the DNA from embryos from 11-month-old donors displayed an intermediate phenotype. According to Ingenuity Pathway Analysis, the upstream regulator genes cellular tumor antigen p53, transforming growth factor ß1, tumor necrosis factor, and hepatocyte nuclear factor 4α are particularly associated with methylation sensitive targets, which were more hypermethylated in embryos from younger donors.


Subject(s)
Blastocyst/metabolism , DNA Methylation/physiology , Oocyte Donation/veterinary , Age Factors , Animals , Case-Control Studies , Cattle , Cells, Cultured , Embryo, Mammalian , Embryonic Development , Female , Fertilization in Vitro/veterinary , Gene Expression Regulation, Developmental , Male , Oocytes/metabolism , Sexual Maturation/physiology
2.
Reprod Fertil Dev ; 30(7): 980-990, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30447702

ABSTRACT

Genomic selection is accelerating genetic gain in dairy cattle. Decreasing generation time by using younger gamete donors would further accelerate breed improvement programs. Although ovarian stimulation of peripubertal animals is possible and embryos produced in vitro from the resulting oocytes are viable, developmental competence is lower than when sexually mature cows are used. The aim of the present study was to shed light on how oocyte developmental competence is acquired as a heifer ages. Ten peripubertal Bos taurus Holstein heifers underwent ovarian stimulation cycles at the ages of 8, 11 (mean 10.8) and 14 (mean 13.7) months. Collected oocytes were fertilised in vitro with spermatozoa from the same adult male. Each heifer served as its own control. The transcriptomes of granulosa cells recovered with the oocytes were analysed using microarrays. Differential expression of certain genes was measured using polymerase chain reaction. Principal component analysis of microarray data revealed that the younger the animal, the more distinctive the gene expression pattern. Using ingenuity pathway analysis (IPA) and NetworkAnalyst (www.networkanalyst.ca), the main biological functions affected in younger donors were identified. The results suggest that cell differentiation, inflammation and apoptosis signalling are less apparent in peripubertal donors. Such physiological traits have been associated with a lower basal concentration of LH.


Subject(s)
Embryo Transfer/veterinary , Granulosa Cells/metabolism , Ovulation Induction , Transcriptome , Age Factors , Animals , Cattle , Embryo Culture Techniques/veterinary , Female , Oocyte Retrieval/veterinary , Oocytes/metabolism
3.
Reprod Fertil Dev ; 29(12): 2324-2335, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28420480

ABSTRACT

Ovarian stimulation with exogenous FSH followed by FSH withdrawal or 'coasting' is an effective means of increasing the number of oocytes obtainable for the in vitro production of cattle embryos. However, the quality of the oocytes thus obtained varies considerably from one cow to the next. The aim of the present study was to gain a better understanding of the follicular conditions associated with low oocyte developmental competence. Granulosa cells from 94 Holstein cows in a commercial embryo production facility were collected following ovarian stimulation and coasting. Microarray analysis showed 120 genes expressed with a differential of at least 1.5 when comparing donors of mostly competent with donors of mostly incompetent oocytes. Using ingenuity pathway analysis, we revealed the main biological functions and potential upstream regulators that distinguish donors of mostly incompetent oocytes. These are involved in cell proliferation, apoptosis, lipid metabolism, retinol availability and insulin signalling. In summary, we demonstrated that differences in follicle maturity at collection could explain differences in oocyte competence associated with individual animals. We also revealed deficiencies in lipid metabolism and retinol signalling in granulosa cells from donors of mostly incompetent oocytes.


Subject(s)
Follicle Stimulating Hormone/administration & dosage , Gene Expression/drug effects , Granulosa Cells/metabolism , Oocytes/metabolism , Ovulation Induction/veterinary , Animals , Cattle , Female , Fertilization in Vitro/methods , Fertilization in Vitro/veterinary , Granulosa Cells/drug effects , Oocytes/drug effects , Ovulation Induction/methods
4.
Anim Reprod Sci ; 221: 106596, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32942212

ABSTRACT

Two experiments were performed to determine effects of follicular ablation (FA) and GnRH treatment on conception rate and synchronization in timing of ovulation among Holstein heifers. In Experiment 1, heifers were randomly allocated to four groups: Control (n = 84): prostaglandin F2α (PGF) IM on Day 0; FA-5/GnRH (n = 43): FA 5 days before PGF and GnRH on Day 2; FA-4/GnRH (n = 48):FA 4 days before PGF and GnRH on Day 2; andFA-3/GnRH (n = 21): FA 3 days before PGF and GnRH on Day 2. Ultrasonography was performed to determine follicular size, ovulation occurrence, and size of CL. In Experiment 2, heifers were assigned to three groups: Control (n = 264), FA-5/GnRH, and FA-4/GnRH. Pregnancy diagnosis was performed at Days 30 and 60. In Experiment 1, size of largest follicle at time of PGF was less variable (P ≤ 0.05) in all FA groups compared to the Control group. With the FA-5/GnRH and FA-4/GnRH treatments, there were greater (P ≤ 0.05) proportions of timing of ovulation synchronization (86 % and 85 %, respectively) compared to the Control (61 %) and FA-3/GnRH (62 %) groups. In Experiment 2, conception rates did not differ among groups, however, there were more pregnancies per cow when timing-of-ovulation treatments were imposed. In conclusion, follicular ablation combined with GnRH treatment resulted in an increased proportion of heifers having synchronized ovulation and, therefore, number of recipient heifers available for embryo transfer. Additionally, there was no effect on conception rate when there was greater synchronization in timing of ovulation among heifers.


Subject(s)
Cattle/physiology , Embryo Transfer/veterinary , Fertilization/drug effects , Gonadotropin-Releasing Hormone/pharmacology , Ovarian Follicle , Ovulation/drug effects , Animals , Cloprostenol/administration & dosage , Cloprostenol/pharmacology , Dinoprost/administration & dosage , Dinoprost/pharmacology , Estrus Synchronization , Female , Luteolytic Agents/administration & dosage , Luteolytic Agents/pharmacology , Ovulation/physiology , Oxytocics/administration & dosage , Oxytocics/pharmacology
5.
Theriogenology ; 116: 64-70, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29778922

ABSTRACT

Laparoscopic Ovum Pick-Up (LOPU) in calves followed by in vitro embryo production (IVEP) and transfer (ET) into adult recipients has great potential for accelerated genetic gain through shortening of the generation interval. In this study, 11 Holstein calves were subjected to up to six LOPU procedures between the ages of 2-6 months at 2-3 weeks interval. In all cases, the animals received a CIDR 5 days prior to LOPU and were gonadotropin-stimulated starting at 72 h before LOPU using one of three protocols that were rotated twice among the animals during the study. Calves were injected with FSH every 12 h (FSH12h), or every 8 h (FSH8h) or every 8 h until -36 h from LOPU at which point the FSH was replaced with a single dose of 400 IU eCG (FSH8h-eCG). No statistical differences were observed among the 3 treatments in terms of mean follicles available for aspiration (35.7 ±â€¯16 vs. 38.5 ±â€¯25 vs. 31.1 ±â€¯22), mean oocytes recovered (26.5 ±â€¯14 vs. 21.6 ±â€¯10 vs. 19.4 ±â€¯14) and cleavage rate (66.0 ±â€¯14 vs. 61.1 ±â€¯11 vs. 72.2 ±â€¯8), for FSH12h, FSH8h and FSH8h-eCG, respectively. However, FSH8h-eCG resulted in a significantly higher rate of transferable embryos (17.5 ±â€¯8%) compared with FSH12h (8.9 ±â€¯5%, P < 0.05). Oocytes from follicles of ≥5 mm in diameter yielded a higher rate (P < 0.05) of development to the blastocyst stage (13.8%) than those collected from <5 mm follicles (6.8%). Animal age, by comparing animals at <100, 101 to 130 and > 130 days of age, did not affect the mean number of follicles (34.2 ±â€¯15 vs. 39.3 ±â€¯26 vs. 31.6 ±â€¯25), the mean number of oocytes recovered (21.2 ±â€¯10 vs. 24.5 ±â€¯15 vs. 22.6 ±â€¯17), and the cleavage rate (68.6 ±â€¯11 vs. 61.7 ±â€¯12 vs. 70.7 ±â€¯10%), respectively. However, animals in the older age range had significantly higher development to the blastocyst stage (19.9 ±â€¯6 vs. 9.5 ±â€¯8%, P < 0.01) and better embryo quality, as evidenced by higher average cell numbers (119.1 ±â€¯47 vs. 91.5 ±â€¯25, P < 0.05) compared with those in the lower age. Finally, we tested the benefits of relieving endoplasmic reticulum stress by supplementing the culture medium with 50 µM tauroursodeoxycholic acid (TUDCA) and found a numerically higher rate of development to the blastocyst stage (21.1 ±â€¯8 vs. 18.6 ±â€¯4%), but not statistically different, compared with control culture. Overall, our findings indicate that a significant number of transferable embryos (range 10-30) can be produced from Holstein calves before they reach 6 months of age.


Subject(s)
Cattle/physiology , Fertilization in Vitro/veterinary , Gonadotropins/therapeutic use , Oocytes/drug effects , Animals , Embryo Transfer/veterinary , Female , Fertilization in Vitro/methods , Follicle Stimulating Hormone/administration & dosage , Follicle Stimulating Hormone/therapeutic use , Laparoscopy/veterinary , Oocytes/growth & development
6.
Theriogenology ; 93: 111-123, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28257859

ABSTRACT

Assisted reproduction technologies (ART) and high selection pressure in the dairy industry are leading towards the use of younger females for reproduction, thereby reducing the interval between generations. This situation may have a negative impact on embryo quality, thus reducing the success rate of the procedures. This study aimed to document the effects of oocyte donor age on embryo quality, at the transcriptomic level, in order to characterize the effects of using young females for reproduction purpose. Young Holstein heifers (n = 10) were used at three different ages for ovarian stimulation protocols and oocyte collections (at 8, 11 and 14 months). All of the oocytes were fertilized in vitro with the semen of one adult bull, generating three lots of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used for the assessment of gene expression patterns at the blastocyst stage. Embryos from animals at 8 vs 14 months and at 11 vs 14 months were used for microarray hybridization. Validation was done by performing RT-qPCR on seven candidate genes. Age-related contrast analysis (8 vs 14 mo and 11 vs 14 mo) identified 242 differentially expressed genes (DEGs) for the first contrast, and 296 for the second. The analysis of the molecular and biological functions of the DEGs suggests a metabolic cause to explain the differences that are observed between embryos from immature and adult subjects. The mTOR and PPAR signaling pathways, as well as the NRF2-mediated oxidative stress response pathways were among the gene expression pathways affected by donor age. In conclusion, the main differences between embryos produced at peri-pubertal ages are related to metabolic conditions resulting in a higher impact of in vitro conditions on blastocyts from younger heifers.


Subject(s)
Cattle/embryology , Fertilization in Vitro/veterinary , Oocyte Donation/veterinary , Oocytes/physiology , Transcriptome/physiology , Age Factors , Aging , Animals , Blastocyst/physiology , Female , Male , Microarray Analysis , NF-E2-Related Factor 2/genetics , Oocyte Retrieval/veterinary , Oxidative Stress/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Real-Time Polymerase Chain Reaction , Sexual Maturation , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
7.
Theriogenology ; 104: 87-93, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28822904

ABSTRACT

The use of oocytes recovered from prepubertal donors for in vitro embryo production has great potential for accelerating the rate of genetic gain in the dairy industry. However, these oocytes are known to be less developmentally competent than those from adult donors. In this study, we investigated the effect of age and gonadotropin stimulation in Holstein heifers subjected to oocyte collection every two weeks between 2 and 6 months of age. In order to assess the effect of gonadotropin stimulation, animals were subjected to one of three treatments, namely Short (ST; 36-42 h), Long (LT; ≥72 h) and No Treatment (NT) prior to laparoscopic ovum pick-up (LOPU). Our results show that the LT significantly improved the proportion of large follicles (>5 mm diameter) present in the ovary (LT 34.0% vs. ST 11.2% vs. NT 2.4%, P < 0.05), as well as the percentage of good-quality cumulus oocyte complexes (COCs) recovered (LT 95.3 ± 18% vs. ST 85.4 ± 22% vs. NT 82.2 ± 14%, P < 0.05) and blastocyst rate (LT 36.7 ± 26% vs. ST 18.3 ± 15% vs. NT 16.7 ± 9%, P < 0.05). Recovery rate was affected by treatment (LT 70.4 ± 25 vs. ST 85.4 ± 29 vs. NT 72.7 ± 23, P < 0.05). To assess the impact of age, data was grouped into <100 days (A), 100-130 days (B) and >130 days (C) of age at LOPU. We found that as animals got older, although the average number of COCs per donor per LOPU declined (A: 17.5 ± 11 vs. B: 14.7 ± 7 vs. C: 11.9 ± 8), the blastocyst rate increased (A: 12.8 ± 20% vs. B: 17.1 ± 21% vs. C: 21.8 ± 25%, P < 0.05). We also evaluated the incidence of polyspermy and confirmed it is a critical limitation for IVF in calf oocytes. The incidence of polyspermy was unaffected by gonadotropin treatment, but significantly decreased with age. The capacity for full development to term of in vitro produced embryos from calf oocytes was tested by embryo transfer into 21 synchronized adult recipients, which resulted in 13 pregnancies (62%), full development to term and healthy calves born. Finally, the study allowed evaluating the safety of the procedure since, on average, each animal was subjected to 8 LOPU procedures over a period of 4 months. Our results showed that the procedure is safe (no incidents during laparoscopy), and was not harmful for the reproductive future of the animals, as those that were bred became pregnant after reaching sexual maturity.


Subject(s)
Aging/physiology , Embryo Culture Techniques/veterinary , Embryonic Development/drug effects , Gonadotropins/pharmacology , Oocytes/drug effects , Animals , Cattle , Embryo Transfer , Female , In Vitro Oocyte Maturation Techniques/veterinary , Male , Pregnancy
8.
Theriogenology ; 86(5): 1240-6, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27215669

ABSTRACT

The use of oocytes obtained from younger donors for IVF followed by embryo transfer represents an opportunity to accelerate genetic gain by reducing generation time. In this study, we investigated the relationship between donor age and the in vitro developmental competence of oocytes obtained from Holstein females (aged 5-18 months) after FSH stimulation and coasting. The follicle size patterns showed a significantly higher total number of small follicles (5-6 mm) from donors aged 5 to 10 months and a higher total number of medium-sized follicles (7-10 mm) in donors aged 6 to 7 months. Our analysis also revealed that the total number of follicles was significantly higher (P < 0.05) in donors aged 5 to 8 months and tended to be higher (P = 0.053) in nine-month-old donors. However, oocytes obtained from donors aged 5 to 10 months yielded fewer embryos reaching the morula and blastocyst stages. In summary, our results demonstrate that a higher number of oocytes can be obtained from younger animals but lower developmental competence negates this gain.


Subject(s)
Aging/physiology , Cattle/physiology , Follicle Stimulating Hormone/pharmacology , Oocytes/physiology , Animals , Embryo Culture Techniques , Female , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL