Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Environ Manage ; 56(6): 1502-13, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26133482

ABSTRACT

Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.


Subject(s)
Climate Change , Conservation of Natural Resources/methods , Decision Making , Ecosystem , Environmental Policy , Geography , Humans , Oregon
2.
Environ Manage ; 55(6): 1217-26, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25822888

ABSTRACT

Influenced by natural climatic, geological, and evolutionary changes, landscapes and the ecosystems within are continuously changing. In addition to these natural pressures, anthropogenic drivers have increasingly influenced ecosystems. Whether affected by natural or anthropogenic processes, ecosystems, ecological communities, and ecosystem functioning are dynamic and can lead to "novel" or "emerging" ecosystems. Current literature identifies several definitions of these ecosystems but lacks an unambiguous definition and framework for categorizing what constitutes a novel ecosystem and for informing decisions around best management practices. Here we explore the various definitions used for novel ecosystems, present an unambiguous definition, and propose a framework for identifying the most appropriate management option. We identify and discuss three approaches for managing novel ecosystems: managing against, tolerating, and managing for these systems, and we provide real-world examples of each approach. We suggest that this framework will allow managers to make thoughtful decisions about which strategy is most appropriate for each unique situation, to determine whether the strategy is working, and to facilitate decision-making when it is time to modify the management approach.


Subject(s)
Biological Evolution , Climate Change , Conservation of Natural Resources/methods , Ecosystem , Animals , Humans
3.
Sci Total Environ ; 927: 171153, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38460683

ABSTRACT

About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.

4.
Sci Total Environ ; 900: 165728, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37495135

ABSTRACT

Municipal wastewater treatment plant (WWTP) effluent is a primary source of pharmaceuticals and personal care products (PPCPs) to the marine environment, as most of these compounds are not fully removed during the treatment process. Continual discharge from WWTPs into coastal areas may act as a stressor by continually exposing organisms to a suite of PPCPs. To quantify organismal exposure to PPCP mixtures, we conducted a 12-week lab experiment that exposed Pacific oysters to effluent from two Oregon coastal WWTPs of different discharge capacities (permitted as <1 million gallons/day and >1 million gallons/day; or < or >3.785 million liters/day) at a dilution of 25 %. Composite samples of weekly collected effluent and a subset of freeze-dried oysters from experiment week 12 were analyzed for PPCPs. Though challenges with food availability inhibited our ability to confidently identify effects of the contaminants on growth and fitness, the experiment allowed us to examine uptake of contaminants from effluent into an estuarine bivalve of commercial importance. We detected 30 PPCPs and three alkylphenols in effluent and 13 PPCPs and four alkylphenols in oyster tissue, indicating high rates of release from secondary treatment and significant potential for marine organism exposure to and uptake of PPCPs in rural coastal areas.


Subject(s)
Cosmetics , Crassostrea , Water Pollutants, Chemical , Water Purification , Animals , Wastewater , Water Pollutants, Chemical/analysis , Environmental Monitoring , Cosmetics/analysis , Pharmaceutical Preparations , Waste Disposal, Fluid
5.
Mar Pollut Bull ; 196: 115595, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37852064

ABSTRACT

Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.


Subject(s)
Cosmetics , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring , Persistent Organic Pollutants , Microplastics , Plastics , Polycyclic Aromatic Hydrocarbons/analysis , Pharmaceutical Preparations , Geologic Sediments
6.
Sci Total Environ ; 819: 152053, 2022 May 01.
Article in English | MEDLINE | ID: mdl-34856270

ABSTRACT

Contaminants are ubiquitous in the environment, often reaching aquatic systems. Combinations of forestry use pesticides have been detected in both water and aquatic organism tissue samples in coastal systems. Yet, most toxicological studies focus on the effects of these pesticides individually, at high doses, and over acute time periods, which, while key for establishing toxicity and safe limits, are rarely environmentally realistic. We examined chronic (90 days) exposure by the soft-shell clam, Mya arenaria, to environmentally relevant concentrations of four pesticides registered for use in forestry (atrazine, 5 µg/L; hexazinone, 0.3 µg/L; indaziflam, 5 µg/L; and bifenthrin, 1.5 µg/g organic carbon (OC)). Pesticides were tested individually and in combination, except bifenthrin, which was tested only in combination with the other three. We measured shell growth and condition index every 30 days, as well as feeding rates, mortality, and chemical concentrations in tissue from a subset of clams at the end of the experiment to measure contaminant uptake. Indaziflam caused a high mortality rate (max. 36%), followed by atrazine (max. 27%), both individually as well as in combination with other pesticides. Additionally, indaziflam concentrations in tissue (61.70-152.56 ng/g) were higher than those of atrazine (26.48-48.56 ng/g), despite equal dosing concentrations, indicating higher tissue accumulation. Furthermore, clams exposed to indaziflam and hexazinone experienced reduced condition index and clearance rates individually and in combination with other compounds; however, the two combined did not result in significant mortality. These two compounds, even at environmentally relevant concentrations, affected a non-target organism and, in the case of the herbicide indaziflam, accumulated in clam tissue and appeared more toxic than other tested pesticides. These findings underscore the need for more comprehensive studies combining multiple compounds at relevant concentrations to understand their impacts on aquatic ecosystems.


Subject(s)
Mya , Pesticides , Water Pollutants, Chemical , Animals , Ecosystem , Forestry , Pesticides/analysis , Pesticides/toxicity , Water Pollutants, Chemical/analysis
7.
Ecotoxicology ; 20(4): 855-61, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21431318

ABSTRACT

Caffeine, a biologically active drug with many known molecular targets, is recognized as a contaminant of marine systems. Although the concentrations of caffeine reported from aquatic systems are low (ng/l-µg/l), harmful ecological effects not detected by traditional toxicity tests could occur as a result of caffeine contamination. We used Hsp70, a molecular biomarker of cellular stress, to investigate the sub-lethal cellular toxicity of environmentally relevant concentrations of caffeine on the mussel Mytilus californianus, a dominant species in the rocky intertidal zone along the Oregon Coast. Hsp70 concentrations in the gill and mantle tissue of mussels exposed to 0.05, 0.2, and 0.5 µg/l of caffeine for 10, 20, and 30 days were compared to basal levels in control mussels. Hsp70 in the gill tissue of M. californianus had an initial attenuation of the stress protein followed by a significant up-regulation relative to controls in all but the 0.5 µg/l treatment. Hsp70 in the mantle tissue of mussels exposed to caffeine did not differ from control mussels. This study provides laboratory evidence that environmentally relevant concentrations of caffeine can exert an effect on M. californianus gill tissue at the molecular-level.


Subject(s)
Caffeine/toxicity , HSP70 Heat-Shock Proteins/metabolism , Mytilus/drug effects , Water Pollutants, Chemical/toxicity , Animals , Gills/metabolism , Mytilus/metabolism
8.
Mar Pollut Bull ; 170: 112584, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34157539

ABSTRACT

Pharmaceuticals and personal care products in wastewater discharge can be stressors to estuarine species. We transplanted juvenile Pacific oysters at varying distances within sites near wastewater treatment plant outfalls or oyster aquaculture control sites to assess small scale spatial variation in contaminant uptake and oyster condition. Oysters were transplanted to sites in Coos and Netarts Bays, Oregon and Grays Harbor, Washington, then collected after 9 and 12 months. Two pharmaceuticals (miconazole and virginiamycin M1) were detected in spring samples and four alkylphenols (NP1EO, NP2EO, NP and OP) were detected in summer samples, with more frequent detections at wastewater sites. Contaminant concentrations were similar across site types, indicating that even in sparsely populated coastal areas (<25,000 in the watershed), shellfish are exposed to and uptake wastewater contaminants. Additionally, oyster condition was lower at wastewater sites compared to aquaculture sites, indicating a need to better understand whether contaminant exposure affects oyster condition.


Subject(s)
Crassostrea , Pharmaceutical Preparations , Animals , Aquaculture , Bays , Shellfish
9.
Toxics ; 9(3)2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33801358

ABSTRACT

Terrestrial land use activities present cross-ecosystem threats to riverine and marine species and processes. Specifically, pesticide runoff can disrupt hormonal, reproductive, and developmental processes in aquatic organisms, yet non-point source pollution is difficult to trace and quantify. In Oregon, U.S.A., state and federal forestry pesticide regulations, designed to meet regulatory water quality requirements, differ in buffer size and pesticide applications. We deployed passive water samplers and collected riverine and estuarine bivalves Margaritifera falcata, Mya arenaria, and Crassostrea gigas from Oregon Coast watersheds to examine forestry-specific pesticide contamination. We used non-metric multidimensional scaling and regression to relate concentrations and types of pesticide contamination across watersheds to ownership and management metrics. In bivalve samples collected from eight coastal watersheds, we measured twelve unique pesticides (two herbicides; three fungicides; and seven insecticides). Pesticides were detected in 38% of bivalve samples; and frequency and maximum concentrations varied by season, species, and watershed with indaziflam (herbicide) the only current-use forestry pesticide detected. Using passive water samplers, we measured four current-use herbicides corresponding with planned herbicide applications; hexazinone and atrazine were most frequently detected. Details about types and levels of exposure provide insight into effectiveness of current forest management practices in controlling transport of forest-use pesticides.

10.
Conserv Biol ; 24(1): 207-16, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19906066

ABSTRACT

Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.


Subject(s)
Conservation of Natural Resources , Ecosystem , Communication
11.
Waste Manag ; 118: 416-425, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32949811

ABSTRACT

Production and use of pharmaceuticals in the United States is high and continues to grow. This, combined with poor wastewater removal rates for drugs in excreted waste, and improper pharmaceutical disposal leads to the presence of pharmaceuticals in fresh- and marine waters and wildlife. In the United States, safe drug take-back boxes, or dropboxes, were established in pharmacies after federal legislation passed in 2014, allowing for year-round safe collection of leftover pharmaceuticals. The overarching objective of this work was to identify opportunities for improving access to proper pharmaceutical disposal. We assessed consumer behavior regarding drug disposal choices and knowledge of dropboxes at pharmacies, investigated pharmacist attitudes toward and recommendations about leftover drug disposal, and compared responses at locations with and without dropboxes. We also explored obstacles to dropbox adoption and usage. We found that customer awareness of dropboxes as well as knowledge about risks of improper disposal are low, however awareness was greater at pharmacies with dropboxes. Additionally, pharmacists at dropbox locations were more consistent in their messaging to customers, more likely to recommend proper disposal methods, and more supportive of drug take-back programs. Through a focus group, we learned that further consumer education would overwhelm the capacity of the existing dropboxes. Based on our findings, we recommend solutions to improper disposal focus on legislation mandating dropboxes at pharmacies and pressure on the pharmaceutical industry to fund proper disposal of unused pharmaceuticals.


Subject(s)
Medical Waste Disposal , Pharmaceutical Preparations , Pharmacists , Attitude , Humans , United States
12.
Environ Toxicol Chem ; 39(8): 1590-1598, 2020 08.
Article in English | MEDLINE | ID: mdl-32430919

ABSTRACT

Microplastics are ubiquitous in our environment and are found in rivers, streams, oceans, and even tap water. Riverine microplastics are relatively understudied compared with those in marine ecosystems. In Oregon (USA), we sampled 8 sites along 4 freshwater rivers spanning rural to urban areas to quantify microplastics. Plankton tow samples from sites along the Columbia, Willamette, Deschutes, and Rogue Rivers were analyzed using traditional light microscopy for initial microplastic counts. Application of Nile Red dye to validate microplastics improved microplastic identification, particularly for particles (Wilcox test; p = 0.001). Nile Red-corrected microfiber abundance was correlated with human population within 5 km of the sample site (R² = 0.554), although no such relationship was observed between microparticles and population (R² = 0.183). We found that plastics were present in all samples from all sites, despite the range from undeveloped, remote stretches of river in rural areas to metropolitan sites within Portland (OR, USA), demonstrating the pervasive presence of plastic pollution in freshwater ecosystems. Environ Toxicol Chem 2020;39:1590-1598. © 2020 SETAC.


Subject(s)
Cost-Benefit Analysis , Environmental Monitoring/economics , Environmental Monitoring/methods , Microplastics/analysis , Rivers/chemistry , Cities , Environmental Pollution/analysis , Fresh Water/chemistry , Geography , Oregon , Water Pollutants, Chemical/analysis
13.
Sci Total Environ ; 580: 43-49, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27939996

ABSTRACT

As of 2008, approximately 48% of Americans use prescription drugs within any given 30-day period. Many pharmaceutical compounds are not fully metabolized by the human body, nor fully removed by wastewater treatment systems, before release into the environment. As a result, a vast array of pharmaceuticals has been detected in marine and freshwater organisms, sediments, and waters, with unintended effects on non-target organisms, and limited studies of environmental effects. The antibiotics sulfamethoxazole (SMX), and trimethoprim (TRI), often prescribed together to treat bacterial infections, have been detected worldwide in marine and estuarine environments at concentrations up to 765-870ng/L each. Little research has examined sub-lethal effects of antibiotic mixtures at environmentally-relevant concentrations on marine organisms. We examined the effects of mixtures of these two antibiotics on three marine microalgal species with wide geographic ranges: Isochrysis galbana, Chaetoceros neogracile, and Nannochloropsis oculata. In separate simulations using a temperature/light-controlled set-up, we measured the growth response for each species to environmentally-relevant levels of SMX and TRI. N. oculata growth was significantly reduced by mixture treatments of both drugs (p<0.05), by TRI (p<0.001), and by SMX (p<0.001), whereas only aggregated SMX levels significantly reduced growth for the other two species (p<0.005). The exposure time at which growth rates were affected varied across species, with significant reduction in growth focused in the latter half of the experimental period for C. neogracile and N. oculata (Days 15 and 6 respectively), and midway through the experimental period for I. galbana (by Day 3). This study finds that important marine primary producers respond to the presence of SMX and TRI in the water, offering an understanding of environmental consequences of anthropogenic pharmaceuticals contaminants, and specifically the suite of antibiotics, that are released into marine ecosystems at an ever-growing rate, and highlighting potential cascading effects through trophic levels.


Subject(s)
Anti-Bacterial Agents/adverse effects , Microalgae/drug effects , Sulfamethoxazole/adverse effects , Trimethoprim/adverse effects , Water Pollutants, Chemical/adverse effects , Wastewater
14.
Ecol Evol ; 7(21): 9151-9161, 2017 11.
Article in English | MEDLINE | ID: mdl-29152204

ABSTRACT

Predators exert considerable top-down pressure on ecosystems by directly consuming prey or indirectly influencing their foraging behaviors and habitat use. Prey is, therefore, forced to balance predation risk with resource reward. A growing list of anthropogenic stressors such as rising temperatures and ocean acidification has been shown to influence prey risk behaviors and subsequently alter important ecosystem processes. Yet, limited attention has been paid to the effects of chronic pharmaceutical exposure on risk behavior or as an ecological stressor, despite widespread detection and persistence of these contaminants in aquatic environments. In the laboratory, we simulated estuarine conditions of the shore crab, Hemigrapsus oregonensis, and investigated whether chronic exposure (60 days) to field-detected concentrations (0, 3, and 30 ng/L) of the antidepressant fluoxetine affected diurnal and nocturnal risk behaviors in the presence of a predator, Cancer productus. We found that exposure to fluoxetine influenced both diurnal and nocturnal prey risk behaviors by increasing foraging and locomotor activity in the presence of predators, particularly during the day when these crabs normally stay hidden. Crabs exposed to fluoxetine were also more aggressive, with a higher frequency of agonistic interactions and increased mortality due to conflicts with conspecifics. These results suggest that exposure to field-detected concentrations of fluoxetine may alter the trade-off between resource acquisition and predation risk among crabs in estuaries. This fills an important data gap, highlighting how intra- and interspecific behaviors are altered by exposure to field concentrations of pharmaceuticals; such data more explicitly identify potential ecological impacts of emerging contaminants on aquatic ecosystems and can aid water quality management.

15.
Sci Total Environ ; 545-546: 621-8, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26766390

ABSTRACT

Environmental stressors shape community composition and ecosystem functioning. Contaminants such as pharmaceuticals are of increasing concern as an environmental stressor due to their persistence in surface waters worldwide. Limited attention has been paid to the effects of pharmaceuticals on marine life, despite widespread detection of these contaminants in the marine environment. Of the existing studies, the majority assess the negative effects of pharmaceuticals over an exposure period of 30 days or less and focus on cellular and subcellular biomarkers. Longer studies are required to determine if chronic contaminant exposure poses risks to marine life at environmentally relevant concentrations; and examination of whole organism effects are necessary to identify potential community-level consequences in estuarine and marine ecosystems. We conducted a long-term exposure study (107 days) with the anti-depressant pharmaceutical, fluoxetine (the active constituent in Prozac®) to determine whether minimal concentrations affected whole organism metrics in the California mussel, Mytilus californianus. We measured algal clearance rates, mussel growth, and the gonadosomatic index, a measure of reproductive health. We found that fluoxetine negatively affects all measured characteristics, however many effects were mediated by length of exposure. Our results fill an important data gap, highlighting organism-level effects of chronic exposure periods; such data more explicitly identify the overall impacts of pharmaceuticals and other contaminants on marine communities and ecosystems.


Subject(s)
Environmental Monitoring , Fluoxetine/toxicity , Mytilus/physiology , Water Pollutants, Chemical/toxicity , Animals , California , Reproduction/drug effects
16.
Environ Sci Pollut Res Int ; 23(22): 22365-22384, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27617334

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that are increasing in use and have demonstrated negative effects on aquatic organisms. There is a growing body of literature reporting the effects of PPCPs on freshwater organisms, but studies on the effects of PPCPs to marine and estuarine organisms are limited. Among effect studies, the vast majority examines subcellular or cellular effects, with far fewer studies examining organismal- and community-level effects. We reviewed the current published literature on marine and estuarine algae, invertebrates, fish, and mammals exposed to PPCPs, in order to expand upon current reviews. This paper builds on previous reviews of PPCP contamination in marine environments, filling prior literature gaps and adding consideration of ecosystem function and level of knowledge across marine habitat types. Finally, we reviewed and compiled data gaps suggested by current researchers and reviewers and propose a multi-level model to expand the focus of current PPCP research beyond laboratory studies. This model includes examination of direct ecological effects including food web and disease dynamics, biodiversity, community composition, and other ecosystem-level indicators of contaminant-driven change.


Subject(s)
Aquatic Organisms/drug effects , Cosmetics/toxicity , Ecosystem , Pharmaceutical Preparations/chemistry , Water Pollutants, Chemical/toxicity , Animals , Biodiversity , Fishes , Invertebrates/drug effects , Water Pollutants, Chemical/chemistry
17.
Sci Total Environ ; 557-558: 869-79, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27084996

ABSTRACT

Chemical contaminants can be introduced into estuarine and marine ecosystems from a variety of sources including wastewater, agriculture and forestry practices, point and non-point discharges, runoff from industrial, municipal, and urban lands, accidental spills, and atmospheric deposition. The diversity of potential sources contributes to the likelihood of contaminated marine waters and sediments and increases the probability of uptake by marine organisms. Despite widespread recognition of direct and indirect pathways for contaminant deposition and organismal exposure in coastal systems, spatial and temporal variability in contaminant composition, deposition, and uptake patterns are still poorly known. We investigated these patterns for a suite of persistent legacy contaminants including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chemicals of emerging concern including pharmaceuticals within two Oregon coastal estuaries (Coos and Netarts Bays). In the more urbanized Coos Bay, native Olympia oyster (Ostrea lurida) tissue had approximately twice the number of PCB congeners at over seven times the total concentration, yet fewer PBDEs at one-tenth the concentration as compared to the more rural Netarts Bay. Different pharmaceutical suites were detected during each sampling season. Variability in contaminant types and concentrations across seasons and between species and media (organisms versus sediment) indicates the limitation of using indicator species and/or sampling annually to determine contaminant loads at a site or for specific species. The results indicate the prevalence of legacy contaminants and CECs in relatively undeveloped coastal environments highlighting the need to improve policy and management actions to reduce contaminant releases into estuarine and marine waters and to deal with legacy compounds that remain long after prohibition of use. Our results point to the need for better understanding of the ecological and human health risks of exposure to the diverse cocktail of pollutants and harmful compounds that will continue to leach from estuarine sediments over time.


Subject(s)
Environmental Monitoring , Ostreidae/metabolism , Water Pollutants, Chemical/metabolism , Animals , Estuaries , Geologic Sediments/chemistry , Halogenated Diphenyl Ethers/analysis , Halogenated Diphenyl Ethers/metabolism , Oregon , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Seawater/chemistry , Water Pollutants, Chemical/analysis
18.
Mar Pollut Bull ; 64(7): 1417-24, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22647644

ABSTRACT

Caffeine, a biologically active drug, is recognized as a contaminant of freshwater and marine systems. We quantified caffeine concentrations in Oregon's coastal ocean to determine whether levels correlated with proximity to caffeine pollution sources. Caffeine was analyzed at 14 coastal locations, stratified between populated areas with sources of caffeine pollution and sparsely populated areas with no major caffeine pollution sources. Caffeine concentrations were measured in major water bodies discharging near sampling locations. Caffeine in seawater ranged from below the reporting limit (8.5 ng/L) to 44.7 ng/L. Caffeine occurrence and concentrations in seawater did not correspond with pollution threats from population density and point and non-point sources, but did correspond with storm event occurrence. Caffeine concentrations in rivers and estuaries draining to the coast ranged from below the reporting limit to 152.2 ng/L. This study establishes the occurrence of caffeine in Oregon's coastal waters, yet relative importance of sources, seasonal variability, and processes affecting caffeine transport into the coastal ocean require further research.


Subject(s)
Caffeine/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Environmental Monitoring , Oregon
19.
Science ; 319(5861): 321-3, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18202288

ABSTRACT

A common assumption is that ecosystem services respond linearly to changes in habitat size. This assumption leads frequently to an "all or none" choice of either preserving coastal habitats or converting them to human use. However, our survey of wave attenuation data from field studies of mangroves, salt marshes, seagrass beds, nearshore coral reefs, and sand dunes reveals that these relationships are rarely linear. By incorporating nonlinear wave attenuation in estimating coastal protection values of mangroves in Thailand, we show that the optimal land use option may instead be the integration of development and conservation consistent with ecosystem-based management goals. This result suggests that reconciling competing demands on coastal habitats should not always result in stark preservation-versus-conversion choices.


Subject(s)
Conservation of Natural Resources , Ecology , Ecosystem , Rhizophoraceae , Wetlands , Alismatales , Animals , Anthozoa , Aquaculture/economics , Conservation of Natural Resources/economics , Cost-Benefit Analysis , Fisheries/economics , Lythraceae , Penaeidae , Thailand , Trees , Water Movements , Wood
SELECTION OF CITATIONS
SEARCH DETAIL