Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Chem Soc Rev ; 53(13): 6779-6829, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38828885

ABSTRACT

This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.


Subject(s)
Extracellular Vesicles , Fluorescent Dyes , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Humans , Fluorescent Dyes/chemistry , Radioactive Tracers , Magnetic Resonance Imaging/methods , Animals , Contrast Media/chemistry , Contrast Media/metabolism
2.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047460

ABSTRACT

Multiple sclerosis (MS) is a disease in which the immune system damages components of the central nervous system (CNS), leading to the destruction of myelin and the formation of demyelinating plaques. This often occurs in episodic "attacks" precipitated by the transmigration of leukocytes across the blood-brain barrier (BBB), and repeated episodes of demyelination lead to substantial losses of axons within and removed from plaques, ultimately leading to progressive neurological dysfunction. Within leukocyte populations, macrophages and T and B lymphocytes are the predominant effectors. Among current immunotherapies, oral cladribine's impact on lymphocytes is well characterised, but little is known about its impact on other leukocytes such as monocytes and dendritic cells (DCs). The aim of this study was to determine the transmigratory ability of monocyte and DC subsets in healthy subjects and untreated and cladribine-treated relapse-remitting MS (RRMS) patients using a well-characterised model of the BBB. Peripheral blood mononuclear cells from subjects were added to an in vitro transmigration assay to assess cell migration. Our findings show that while prior treatment with oral cladribine inhibits the migration of intermediate monocytes, it has no impact on the transmigration of DC subsets. Overall, our data indicate a previously unrecognised role of cladribine on intermediate monocytes, known to accumulate in the brain active MS lesions.


Subject(s)
Monocytes , Multiple Sclerosis , Humans , Cladribine/pharmacology , Cladribine/therapeutic use , Multiple Sclerosis/drug therapy , Blood-Brain Barrier , Leukocytes, Mononuclear
3.
Immunol Cell Biol ; 100(6): 453-467, 2022 07.
Article in English | MEDLINE | ID: mdl-35416319

ABSTRACT

B cells play a major role in multiple sclerosis (MS), with many successful therapeutics capable of removing them from circulation. One such therapy, alemtuzumab, is thought to reset the immune system without the need for ongoing therapy in a proportion of patients. The exact cells contributing to disease pathogenesis and quiescence remain to be identified. We utilized mass cytometry to analyze B cells from the blood of patients with relapse-remitting MS (RRMS) before and after alemtuzumab treatment, and during relapse. A complementary RRMS cohort was analyzed by single-cell RNA sequencing. The R package "Spectre" was used to analyze these data, incorporating FlowSOM clustering, sparse partial least squares-discriminant analysis and permutational multivariate analysis of variance. Immunoglobulin (Ig)A+ and IgG1 + B-cell numbers were altered, including higher IgG1 + B cells during relapse. B-cell linker protein (BLNK), CD40 and CD210 expression by B cells was lower in patients with RRMS compared with non-MS controls, with similar results at the transcriptomic level. Finally, alemtuzumab restored BLNK, CD40 and CD210 expression by IgA+ and IgG1 + B cells, which was altered again during relapse. These data suggest that impairment of IgA+ and IgG1 + B cells may contribute to MS pathogenesis, which can be restored by alemtuzumab.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Alemtuzumab/therapeutic use , Chronic Disease , Humans , Immunoglobulin A , Immunoglobulin G , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Recurrence
4.
Int J Mol Sci ; 22(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809632

ABSTRACT

Over the past two decades, mesenchymal stromal cells (MSCs) have demonstrated great potential in the treatment of inflammation-related conditions. Numerous early stage clinical trials have suggested that this treatment strategy has potential to lead to significant improvements in clinical outcomes. While promising, there remain substantial regulatory hurdles, safety concerns, and logistical issues that need to be addressed before cell-based treatments can have widespread clinical impact. These drawbacks, along with research aimed at elucidating the mechanisms by which MSCs exert their therapeutic effects, have inspired the development of extracellular vesicles (EVs) as anti-inflammatory therapeutic agents. The use of MSC-derived EVs for treating inflammation-related conditions has shown therapeutic potential in both in vitro and small animal studies. This review will explore the current research landscape pertaining to the use of MSC-derived EVs as anti-inflammatory and pro-regenerative agents in a range of inflammation-related conditions: osteoarthritis, rheumatoid arthritis, Alzheimer's disease, cardiovascular disease, and preeclampsia. Along with this, the mechanisms by which MSC-derived EVs exert their beneficial effects on the damaged or degenerative tissues will be reviewed, giving insight into their therapeutic potential. Challenges and future perspectives on the use of MSC-derived EVs for the treatment of inflammation-related conditions will be discussed.


Subject(s)
Extracellular Vesicles/metabolism , Inflammation/pathology , Inflammation/therapy , Mesenchymal Stem Cells/metabolism , Animals , Humans , Models, Biological
5.
J Gen Virol ; 101(6): 622-634, 2020 06.
Article in English | MEDLINE | ID: mdl-32375993

ABSTRACT

Zika virus (ZIKV) has recently emerged as an important human pathogen due to the strong evidence that it causes disease of the central nervous system, particularly microcephaly and Guillain-Barré syndrome. The pathogenesis of disease, including mechanisms of neuroinvasion, may include both invasion via the blood-brain barrier and via peripheral (including cranial) nerves. Cellular responses to infection are also poorly understood. This study characterizes the in vitro infection of laboratory-adapted ZIKV African MR766 and two Asian strains of (1) brain endothelial cells (hCMEC/D3 cell line) and (2) olfactory ensheathing cells (OECs) (the neuroglia populating cranial nerve I and the olfactory bulb; both human and mouse OEC lines) in comparison to kidney epithelial cells (Vero cells, in which ZIKV infection is well characterized). Readouts included infection kinetics, intracellular virus localization, viral persistence and cytokine responses. Although not as high as in Vero cells, viral titres exceeded 104 plaque-forming units (p.f.u.) ml-1 in the endothelial/neuroglial cell types, except hOECs. Despite these substantial titres, a relatively small proportion of neuroglial cells were primarily infected. Immunolabelling of infected cells revealed localization of the ZIKV envelope and NS3 proteins in the cytoplasm; NS3 staining overlapped with that of dsRNA replication intermediate and the endoplasmic reticulum (ER). Infected OECs and endothelial cells produced high levels of pro-inflammatory chemokines. Nevertheless, ZIKV was also able to establish persistent infection in hOEC and hCMEC/D3 cells. Taken together, these results provide basic insights into ZIKV infection of endothelial and neuroglial cells and will form the basis for further study of ZIKV disease mechanisms.


Subject(s)
Brain/virology , Endothelial Cells/virology , Neuroglia/virology , Zika Virus Infection/virology , Zika Virus/pathogenicity , Animals , Blood-Brain Barrier/virology , Cell Line , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Humans , Mice , Vero Cells , Virus Replication/genetics
6.
Microcirculation ; 26(2): e12485, 2019 02.
Article in English | MEDLINE | ID: mdl-29923276

ABSTRACT

Extracellular vesicles (EV) are a heterogeneous collection of membrane-surrounded structures released from all studied cells, under both physiological and pathological conditions. These nano-size vesicles carry complex cargoes including different classes of proteins, lipids and nucleic acids and are known to act as a communication and signalling vesicles in various cellular process. In addition to their role in development and progression of pathological disorders which make them potentially great biomarkers, EV have beneficial effects, as they take part in homeostasis. In this review we have analysed the evidence for the role of microvesicles and exosomes secreted from other cells on microvascular endothelium (EV uptake) as well as the role of endothelial-derived vesicles on their neighbouring and distant cells (EV release).


Subject(s)
Extracellular Vesicles/physiology , Microvessels/pathology , Animals , Endothelium, Vascular/metabolism , Exosomes/metabolism , Exosomes/physiology , Homeostasis , Humans
7.
Am J Pathol ; 188(7): 1653-1665, 2018 07.
Article in English | MEDLINE | ID: mdl-29929915

ABSTRACT

The innate immune system is the primary defense against cryptococcal infection, but paradoxically it promotes infection of the central nervous system. We performed a detailed longitudinal study of neurocryptococcosis in normal, chimeric, green fluorescent protein phagocyte-positive mice and phagocyte-depleted mice and interrogated the central nervous system innate immune response to Cryptococcus neoformans H99 using confocal microscopy, histology, flow cytometry, and quantification of brain cytokine/chemokines and fungal burdens. C. neoformans was present in the perivascular space (PVS) of post-capillary venules. This was associated with a massive influx of blood-derived monocytes, neutrophils, and T lymphocytes into the PVS and a predominantly proinflammatory cytokine/chemokine response. Phagocytes containing cryptococci were present only in the lumen and corresponding PVS of post-capillary venules. Free cryptococci were observed breaching the glia limitans, the protective barrier between the PVS and the cerebral parenchyma. Parenchymal cryptococcomas were typically in direct contact with post-capillary venules and lacked surrounding immune cell infiltrates. Phagocyte depletion abrogated cryptococcoma formation and PVS infiltrates. Together, these observations suggest that cryptococcomas can originate via phagocyte-dependent transport across post-capillary venular endothelium into the PVS and thence via passage of free cryptococci into the brain. In conclusion, we demonstrate for the first time that the PVS of cortical post-capillary venules is the major site of the early innate immune response to, and phagocyte-dependent entry of, C. neoformans.


Subject(s)
Brain/immunology , Cryptococcus neoformans/immunology , Immunity, Innate/immunology , Meningitis, Cryptococcal/immunology , Phagocytes/immunology , T-Lymphocytes/immunology , Venules/immunology , Animals , Brain/microbiology , Brain/pathology , Disease Models, Animal , Female , Meningitis, Cryptococcal/microbiology , Meningitis, Cryptococcal/pathology , Mice , Mice, Inbred C57BL , Monocytes , Phagocytes/microbiology , Phagocytes/pathology , T-Lymphocytes/microbiology , T-Lymphocytes/pathology , Venules/microbiology , Venules/pathology
8.
Blood ; 129(12): 1669-1679, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28096086

ABSTRACT

Clinical studies indicate that thrombocytopenia correlates with the development of severe falciparum malaria, suggesting that platelets either contribute to control of parasite replication, possibly as innate parasite killer cells or function in eliciting pathogenesis. Removal of platelets by anti-CD41 mAb treatment, platelet inhibition by aspirin, and adoptive transfer of wild-type (WT) platelets to CD40-KO mice, which do not control parasite replication, resulted in similar parasitemia compared with control mice. Human platelets at a physiologic ratio of 1 platelet to 9 red blood cells (RBCs) did not inhibit the in vitro development or replication of blood-stage Plasmodium falciparum The percentage of Plasmodium-infected (iRBCs) with bound platelets during the ascending parasitemia in Plasmodium chabaudi- and Plasmodium berghei-infected mice and the 48-hour in vitro cycle of P falciparum was <10%. P chabaudi and P berghei iRBCs with apoptotic parasites (TdT+) exhibited minimal platelet binding (<5%), which was similar to nonapoptotic iRBCs. These findings collectively indicate platelets do not kill bloodstage Plasmodium at physiologically relevant effector-to-target ratios. P chabaudi primary and secondary parasitemia was similar in mice depleted of platelets by mAb-injection just before infection, indicating that activation of the protective immune response does not require platelets. In contrast to the lack of an effect on parasite replication, adoptive transfer of WT platelets to CD40-KO mice, which are resistant to experimental cerebral malaria, partially restored experimental cerebral malaria mortality and symptoms in CD40-KO recipients, indicating platelets elicit pathogenesis and platelet CD40 is a key molecule.


Subject(s)
Blood Platelets/physiology , Malaria/immunology , Animals , Blood Platelets/parasitology , CD40 Antigens , Cells, Cultured , Erythrocytes/parasitology , Humans , Immunity, Cellular , Malaria/blood , Malaria, Cerebral/etiology , Mice , Plasmodium chabaudi
9.
Nanomedicine ; 18: 259-271, 2019 06.
Article in English | MEDLINE | ID: mdl-30981817

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is partly characterized as epithelial-mesenchymal transition (EMT)-related airflow limitation. Extracellular vesicles (EVs) play crucial roles in the crosstalk between cells, affecting many diseases including COPD. Up to now, the roles of EVs in COPD are still debated. As we found in this investigation, COPD patients have higher miR-21 level in total serum EVs. EMT occurs in lungs of COPD mice. Furthermore, bronchial epithelial cells (BEAS-2B) could generate EVs with less miR-21 when treated with cigarette smoke extract (CSE), impacting less on the M2-directed macrophage polarization than the control-EVs (PBS-treated) according to EVs miR-21 level. Furthermore, the EMT processes in BEAS-2B cells were enhanced with the M2 macrophages proportion when co-cultured. Collectively, these results demonstrate that CSE-treated BEAS-2B cells could alleviate M2 macrophages polarization by modulated EVs, and eventually relieve the EMT process of BEAS-2B cells themselves under COPD pathogenesis, revealing a novel compensatory role of them in COPD.


Subject(s)
Bronchi/pathology , Cell Polarity , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Extracellular Vesicles/metabolism , Macrophages/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Animals , Apoptosis , Cell Line , Cigarette Smoking , Disease Models, Animal , Extracellular Vesicles/ultrastructure , Female , Humans , Macrophages/metabolism , Male , Mice, Inbred C57BL , MicroRNAs/blood , Middle Aged , Pulmonary Disease, Chronic Obstructive/blood
10.
Int J Mol Sci ; 21(1)2019 Dec 22.
Article in English | MEDLINE | ID: mdl-31877909

ABSTRACT

Extracellular vesicles (EVs) are blebs of either plasma membrane or intracellular membranes carrying a cargo of proteins, nucleic acids, and lipids. EVs are produced by eukaryotic cells both under physiological and pathological conditions. Genetic and environmental factors (diet, stress, etc.) affecting EV cargo, regulating EV release, and consequences on immunity will be covered. EVs are found in virtually all body fluids such as plasma, saliva, amniotic fluid, and breast milk, suggesting key roles in immune development and function at different life stages from in utero to aging. These will be reviewed here. Under pathological conditions, plasma EV levels are increased and exacerbate immune activation and inflammatory reaction. Sources of EV, cells targeted, and consequences on immune function and disease development will be discussed. Both pathogenic and commensal bacteria release EV, which are classified as outer membrane vesicles when released by Gram-negative bacteria or as membrane vesicles when released by Gram-positive bacteria. Bacteria derived EVs can affect host immunity with pathogenic bacteria derived EVs having pro-inflammatory effects of host immune cells while probiotic derived EVs mostly shape the immune response towards tolerance.


Subject(s)
Extracellular Vesicles/immunology , Host Microbial Interactions/immunology , Inflammation/immunology , Microbiota/immunology , Bacteria/immunology , Bacteria/metabolism , Bacteria/pathogenicity , Body Fluids/immunology , Body Fluids/metabolism , Extracellular Vesicles/metabolism , Female , Humans , Immune System/cytology , Immune System/immunology , Immune System/microbiology , Inflammation/metabolism , Inflammation/microbiology , Virulence/immunology
11.
Blood ; 127(9): 1192-201, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26511133

ABSTRACT

Plasmodium falciparum malaria infection is associated with an early marked increase in plasma von Willebrand factor (VWF) levels, together with a pathological accumulation of hyperreactive ultra-large VWF (UL-VWF) multimers. Given the established critical role of platelets in malaria pathogenesis, these increases in plasma VWF raise the intriguing possibility that VWF may play a direct role in modulating malaria pathogenesis. To address this hypothesis, we used an established murine model of experimental cerebral malaria (ECM), in which wild-type (WT) C57BL/6J mice were infected with Plasmodium berghei ANKA. In keeping with findings in children with P falciparum malaria, acute endothelial cell activation was an early and consistent feature in the murine model of cerebral malaria (CM), resulting in significantly increased plasma VWF levels. Despite the fact that murine plasma ADAMTS13 levels were not significantly reduced, pathological UL-VWF multimers were also observed in murine plasma following P berghei infection. To determine whether VWF plays a role in modulating the pathogenesis of CM in vivo, we further investigated P berghei infection in VWF(-/-) C57BL/6J mice. Clinical ECM progression was delayed, and overall survival was significantly prolonged in VWF(-/-) mice compared with WT controls. Despite this protection against ECM, no significant differences in platelet counts or blood parasitemia levels were observed between VWF(-/-) and WT mice. Interestingly, however, the degree of ECM-associated enhanced blood-brain barrier permeability was significantly attenuated in VWF(-/-) mice compared with WT controls. Given the significant morbidity and mortality associated with CM, these novel data may have direct translational significance.


Subject(s)
Malaria, Cerebral/etiology , Malaria, Cerebral/metabolism , von Willebrand Factor/metabolism , Animals , Antigens/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Endothelial Cells/metabolism , Humans , Malaria, Cerebral/parasitology , Malaria, Cerebral/prevention & control , Mice, Inbred C57BL , Models, Biological , Peptides/metabolism , Permeability , Plasmodium berghei , Protein Multimerization , Thrombocytopenia/blood , Thrombocytopenia/complications
12.
FASEB J ; 31(7): 2817-2827, 2017 07.
Article in English | MEDLINE | ID: mdl-28314769

ABSTRACT

Microvesicles (MVs) are involved in cell-cell interactions, including disease pathogenesis. Nondestructive Fourier-transform infrared (FTIR) spectra from MVs were assessed as a technique to provide new biochemical insights into a LPS-induced monocyte model of septic shock. FTIR spectroscopy provided a quick method to investigate relative differences in biomolecular content of different MV populations that was complementary to traditional semiquantitative omics approaches, with which it is difficult to provide information on relative changes between classes (proteins, lipids, nucleic acids, carbohydrates) or protein conformations. Time-dependent changes were detected in biomolecular contents of MVs and in the monocytes from which they were released. Differences in phosphatidylcholine and phosphatidylserine contents were observed in MVs released under stimulation, and higher relative concentrations of RNA and α-helical structured proteins were present in stimulated MVs compared with MVs from resting cells. FTIR spectra of stimulated monocytes displayed changes that were consistent with those observed in the corresponding MVs they released. LPS-stimulated monocytes had reduced concentrations of nucleic acids, α-helical structured proteins, and phosphatidylcholine compared with resting monocytes but had an increase in total lipids. FTIR spectra of MV biomolecular content will be important in shedding new light on the mechanisms of MVs and the different roles they play in physiology and disease pathogenesis.-Lee, J., Wen, B., Carter, E. A., Combes, V., Grau, G. E. R., Lay, P. A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation.


Subject(s)
Cell-Derived Microparticles/physiology , Lipopolysaccharides/toxicity , Monocytes/drug effects , Monocytes/physiology , Spectroscopy, Fourier Transform Infrared , Cell Line , Flow Cytometry , Humans
13.
Malar J ; 17(1): 192, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29747626

ABSTRACT

BACKGROUND: Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. RESULTS: The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA-miR-146a and miR-193b-were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. CONCLUSIONS: These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.


Subject(s)
Brain/parasitology , Cell-Derived Microparticles/parasitology , Malaria, Cerebral/pathology , Malaria, Cerebral/physiopathology , Plasmodium berghei/physiology , Plasmodium yoelii/physiology , Animals , Brain/pathology , Brain/physiopathology , Malaria/pathology , Malaria/physiopathology , Mice , Mice, Inbred CBA , MicroRNAs/metabolism
14.
PLoS Pathog ; 10(3): e1003839, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24651155

ABSTRACT

In patients with cerebral malaria (CM), higher levels of cell-specific microparticles (MP) correlate with the presence of neurological symptoms. MP are submicron plasma membrane-derived vesicles that express antigens of their cell of origin and phosphatidylserine (PS) on their surface, facilitating their role in coagulation, inflammation and cell adhesion. In this study, the in vivo production, fate and pathogenicity of cell-specific MP during Plasmodium berghei infection of mice were evaluated. Using annexin V, a PS ligand, and flow cytometry, analysis of platelet-free plasma from infected mice with cerebral involvement showed a peak of MP levels at the time of the neurological onset. Phenotypic analyses showed that MP from infected mice were predominantly of platelet, endothelial and erythrocytic origins. To determine the in vivo fate of MP, we adoptively transferred fluorescently labelled MP from mice with CM into healthy or infected recipient mice. MP were quickly cleared following intravenous injection, but microscopic examination revealed arrested MP lining the endothelium of brain vessels of infected, but not healthy, recipient mice. To determine the pathogenicity of MP, we transferred MP from activated endothelial cells into healthy recipient mice and this induced CM-like brain and lung pathology. This study supports a pathogenic role for MP in the aggravation of the neurological lesion and suggests a causal relationship between MP and the development of CM.


Subject(s)
Cell-Derived Microparticles/pathology , Malaria, Cerebral/blood , Plasmodium berghei/pathogenicity , Adoptive Transfer , Animals , Disease Models, Animal , Female , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Inbred CBA , Virulence
15.
PLoS Pathog ; 10(7): e1004236, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25033406

ABSTRACT

During experimental cerebral malaria (ECM) mice develop a lethal neuropathological syndrome associated with microcirculatory dysfunction and intravascular leukocyte sequestration. The precise spatio-temporal context in which the intravascular immune response unfolds is incompletely understood. We developed a 2-photon intravital microscopy (2P-IVM)-based brain-imaging model to monitor the real-time behaviour of leukocytes directly within the brain vasculature during ECM. Ly6C(hi) monocytes, but not neutrophils, started to accumulate in the blood vessels of Plasmodium berghei ANKA (PbA)-infected MacGreen mice, in which myeloid cells express GFP, one to two days prior to the onset of the neurological signs (NS). A decrease in the rolling speed of monocytes, a measure of endothelial cell activation, was associated with progressive worsening of clinical symptoms. Adoptive transfer experiments with defined immune cell subsets in recombinase activating gene (RAG)-1-deficient mice showed that these changes were mediated by Plasmodium-specific CD8(+) T lymphocytes. A critical number of CD8(+) T effectors was required to induce disease and monocyte adherence to the vasculature. Depletion of monocytes at the onset of disease symptoms resulted in decreased lymphocyte accumulation, suggesting reciprocal effects of monocytes and T cells on their recruitment within the brain. Together, our studies define the real-time kinetics of leukocyte behaviour in the central nervous system during ECM, and reveal a significant role for Plasmodium-specific CD8(+) T lymphocytes in regulating vascular pathology in this disease.


Subject(s)
CD8-Positive T-Lymphocytes , Endothelial Cells , Malaria, Cerebral , Monocytes , Plasmodium berghei/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Malaria, Cerebral/metabolism , Malaria, Cerebral/pathology , Malaria, Cerebral/physiopathology , Mice , Mice, Knockout , Microscopy, Fluorescence , Monocytes/metabolism , Monocytes/pathology
16.
Mult Scler ; 22(14): 1883-1887, 2016 12.
Article in English | MEDLINE | ID: mdl-26931477

ABSTRACT

BACKGROUND: No molecular marker can monitor disease progression and treatment efficacy in multiple sclerosis (MS). Circulating microparticles represent a potential snapshot of disease activity at the blood brain barrier. OBJECTIVES AND METHODS: To profile plasma microparticles by flow cytometry in MS and determine how fingolimod could impact endothelial microparticles production. RESULTS: In non-treated MS patients compared to healthy and fingolimod-treated patients, endothelial microparticles were higher, while B-cell-microparticle numbers were lower. Fingolimod dramatically reduced tumour necrosis factor (TNF)-induced endothelial microparticle release in vitro. CONCLUSION: Fingolimod restored dysregulated endothelial and B-cell-microparticle numbers, which could serve as a biomarker in MS.


Subject(s)
B-Lymphocytes , Cell-Derived Microparticles , Endothelial Cells , Fingolimod Hydrochloride/pharmacology , Immunosuppressive Agents/pharmacology , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Adult , Endothelium, Vascular/drug effects , Female , Fingolimod Hydrochloride/administration & dosage , Humans , Immunosuppressive Agents/administration & dosage , Male , Middle Aged
17.
J Immunol ; 193(7): 3378-87, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25187656

ABSTRACT

Endothelial cells closely interact with circulating lymphocytes. Aggression or activation of the endothelium leads to an increased shedding of endothelial cell microparticles (MP). Endothelial MP (EMP) are found in high plasma levels in numerous immunoinflammatory diseases, such as atherosclerosis, sepsis, multiple sclerosis, and cerebral malaria, supporting their role as effectors and markers of vascular dysfunction. Given our recently described role for human brain microvascular endothelial cells (HBEC) in modulating immune responses, we investigated how HBEC-derived MP could interact with and support the proliferation of T cells. Like their mother cells, EMP expressed molecules important for Ag presentation and T cell costimulation, that is, ß2-microglobulin, MHC II, CD40, and ICOSL. HBEC were able to take up fluorescently labeled Ags with EMP also containing fluorescent Ags, suggestive of Ag carryover from HBEC to EMP. In cocultures, fluorescently labeled EMP from resting or cytokine-stimulated HBEC formed conjugates with both CD4(+) and CD8(+) subsets, with higher proportions of T cells binding EMP from cytokine-stimulated cells. The increased binding of EMP from cytokinestimulated HBEC to T cells was VCAM-1 and ICAM-1 dependent. Finally, in CFSE T cell proliferation assays using anti-CD3 mAb or T cell mitogens, EMP promoted the proliferation of CD4(+) T cells and that of CD8(+) T cells in the absence of exogenous stimuli and in the T cell mitogenic stimulation. Our findings provide novel evidence that EMP can enhance T cell activation and potentially ensuing Ag presentation, thereby pointing toward a novel role for MP in neuroimmunological complications of infectious diseases.


Subject(s)
Antigen Presentation , Brain/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Cell-Derived Microparticles/immunology , Endothelial Cells/immunology , Animals , Brain/blood supply , Brain/cytology , CD4-Positive T-Lymphocytes/cytology , CD40 Antigens/immunology , CD8-Positive T-Lymphocytes/cytology , Endothelial Cells/cytology , Female , Histocompatibility Antigens Class II/immunology , Humans , Inducible T-Cell Co-Stimulator Ligand/immunology , Male , Mice , beta 2-Microglobulin/immunology
18.
Nat Rev Immunol ; 5(9): 722-35, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16138104

ABSTRACT

Malaria is possibly the most serious infectious disease of humans, infecting 5-10% of the world's population, with 300-600 million clinical cases and more than 2 million deaths annually. Adaptive immune responses in the host limit the clinical impact of infection and provide partial, but incomplete, protection against pathogen replication; however, these complex immunological reactions can contribute to disease and fatalities. So, appropriate regulation of immune responses to malaria lies at the heart of the host-parasite balance and has consequences for global public health. This Review article addresses the innate and adaptive immune mechanisms elicited during malaria that either cause or prevent disease and fatalities, and it considers the implications for vaccine design.


Subject(s)
Malaria/immunology , Malaria/parasitology , Plasmodium/immunology , Plasmodium/pathogenicity , Animals , Female , Host-Parasite Interactions , Humans , Malaria/blood , Malaria/prevention & control , Plasmodium/metabolism
19.
J Exp Zool B Mol Dev Evol ; 324(2): 152-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25732926

ABSTRACT

Angiogenesis (blood vessel growth), a key process of mammalian pregnancy, facilitates gas exchange and nutrient transport between the mother and the embryo and is regulated by a suite of growth factors. Vascular endothelial growth factor (VEGF) is crucial to this process in pregnant mammals and potentially pregnant squamates (lizards and snakes), as we investigate here. VEGF111 , an unusual and potent angiogenic splice variant of VEGF, increases its expression during pregnancy in the uterus of a viviparous lizard, in parallel with similar increases in uterine angiogenesis during gestation. However, we also find that VEGF111 is expressed in oviparous skinks, and is not ubiquitous among viviparous skinks. Thus, different mechanisms of uterine angiogenesis during pregnancy may evolve concurrent with viviparity in different lizard lineages.


Subject(s)
Lizards/physiology , Vascular Endothelial Growth Factor A/metabolism , Viviparity, Nonmammalian/physiology , Animals , Female , Oviparity/physiology , Phylogeny , Pregnancy , Protein Isoforms/metabolism , Real-Time Polymerase Chain Reaction , Uterus/metabolism
20.
Malar J ; 14: 389, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26437894

ABSTRACT

BACKGROUND: The pathogenesis of pulmonary oedema (PE) in patients with severe malaria is still unclear. It has been hypothesized that lung injury depends, in addition to microvascular obstruction, on an increased pulmonary capillary pressure and altered alveolar-capillary membrane permeability, causing pulmonary fluid accumulation. METHODS: This study compared the histopathological features of lung injury in Southeast Asian patients (n = 43) who died from severe Plasmodium falciparum malaria, and correlated these with clinical history in groups with or without PE. To investigate the expression of mediators that may influence fluid accumulation in PE, immunohistochemistry and image analysis were performed on controls and sub-sets of patient with or without PE. RESULTS: The expression of leukocyte sub-set antigens, bronchial interleukin (IL)-33, γ-epithelium sodium channel (ENaC), aquaporin (AQP)-1 and -5, and control cytokeratin staining was quantified in the lung tissue of severe malaria patients. Bronchial IL-33 expression was significantly increased in severe malaria patients with PE. Malaria patients with shock showed significantly increased bronchial IL-33 compare to other clinical manifestations. Bronchial IL-33 levels were positively correlated with CD68+ monocyte and elastase + neutrophil, septal congestion and hyaline membrane formation. Moreover, the expression of both vascular smooth muscle cell (VSMC) and bronchial γ-ENaC significantly decreased in severe malaria patients with PE. Both VSMC and bronchial γ-ENaC were negatively correlated with the degree of parasitized erythrocyte sequestration, alveolar thickness, alveolar expansion score, septal congestion score, and malarial pigment score. In contrast AQP-1 and -5 and pan cytokeratin levels were similar between groups. CONCLUSIONS: The results suggest that IL-33 may play a role in lung injury during severe malaria and lead to PE. Both VSMC and bronchial γ-ENaC downregulation may explain pulmonary fluid disturbances and participate in PE pathogenesis in severe malaria patients.


Subject(s)
Epithelial Sodium Channels/metabolism , Interleukin-33/metabolism , Malaria, Falciparum/complications , Malaria, Falciparum/pathology , Pulmonary Edema/etiology , Pulmonary Edema/pathology , Adolescent , Adult , Asia, Southeastern , Child , Child, Preschool , Female , Histocytochemistry , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL