Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Circulation ; 145(12): 916-933, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35175782

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and right heart hypertrophy. PH can be caused by chronic hypoxia, leading to hyper-proliferation of pulmonary arterial smooth muscle cells (PASMCs) and apoptosis-resistant pulmonary microvascular endothelial cells (PMVECs). On reexposure to normoxia, chronic hypoxia-induced PH in mice is reversible. In this study, the authors aim to identify novel candidate genes involved in pulmonary vascular remodeling specifically in the pulmonary vasculature. METHODS: After microarray analysis, the authors assessed the role of SPARC (secreted protein acidic and rich in cysteine) in PH using lung tissue from idiopathic pulmonary arterial hypertension (IPAH) patients, as well as from chronically hypoxic mice. In vitro studies were conducted in primary human PASMCs and PMVECs. In vivo function of SPARC was proven in chronic hypoxia-induced PH in mice by using an adeno-associated virus-mediated Sparc knockdown approach. RESULTS: C57BL/6J mice were exposed to normoxia, chronic hypoxia, or chronic hypoxia with subsequent reexposure to normoxia for different time points. Microarray analysis of the pulmonary vascular compartment after laser microdissection identified Sparc as one of the genes downregulated at all reoxygenation time points investigated. Intriguingly, SPARC was vice versa upregulated in lungs during development of hypoxia-induced PH in mice as well as in IPAH, although SPARC plasma levels were not elevated in PH. TGF-ß1 (transforming growth factor ß1) or HIF2A (hypoxia-inducible factor 2A) signaling pathways induced SPARC expression in human PASMCs. In loss of function studies, SPARC silencing enhanced apoptosis and reduced proliferation. In gain of function studies, elevated SPARC levels induced PASMCs, but not PMVECs, proliferation. Coculture and conditioned medium experiments revealed that PMVECs-secreted SPARC acts as a paracrine factor triggering PASMCs proliferation. Contrary to the authors' expectations, in vivo congenital Sparc knockout mice were not protected from hypoxia-induced PH, most probably because of counter-regulatory proproliferative signaling. However, adeno-associated virus-mediated Sparc knockdown in adult mice significantly improved hemodynamic and cardiac function in PH mice. CONCLUSIONS: This study provides evidence for the involvement of SPARC in the pathogenesis of human PH and chronic hypoxia-induced PH in mice, most likely by affecting vascular cell function.


Subject(s)
Hypertension, Pulmonary , Animals , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Humans , Hypertension, Pulmonary/pathology , Hypoxia/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Osteonectin/genetics , Pulmonary Artery , Vascular Remodeling/genetics
2.
Eur Respir J ; 62(5)2023 11.
Article in English | MEDLINE | ID: mdl-37884305

ABSTRACT

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Subject(s)
Cigarette Smoking , Emphysema , Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Pulmonary Disease, Chronic Obstructive/drug therapy , Hypertension, Pulmonary/complications , Pancreatic Elastase/adverse effects , Pancreatic Elastase/metabolism , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/therapeutic use , Cigarette Smoking/adverse effects , Pulmonary Emphysema/etiology , Lung/metabolism , Emphysema/complications , Mice, Inbred C57BL
3.
Eur Respir J ; 61(6)2023 06.
Article in English | MEDLINE | ID: mdl-37105573

ABSTRACT

BACKGROUND: Electronic cigarette (e-cigarette) vapour is gaining popularity as an alternative to tobacco smoking and can induce acute lung injury. However, the specific role of nicotine in e-cigarette vapour and its long-term effects on the airways, lung parenchyma and vasculature remain unclear. RESULTS: In vitro exposure to nicotine-containing e-cigarette vapour extract (ECVE) or to nicotine-free e-cigarette vapour extract (NF ECVE) induced changes in gene expression of epithelial cells and pulmonary arterial smooth muscle cells (PASMCs), but ECVE in particular caused functional alterations (e.g. a decrease in human and mouse PASMC proliferation by 29.3±5.3% and 44.3±8.4%, respectively). Additionally, acute inhalation of nicotine-containing e-cigarette vapour (ECV) but not nicotine-free e-cigarette vapour (NF ECV) increased pulmonary endothelial permeability in isolated lungs. Long-term in vivo exposure of mice to ECV for 8 months significantly increased the number of inflammatory cells, in particular lymphocytes, compared to control and NF ECV in the bronchoalveolar fluid (BALF) (ECV: 853.4±150.8 cells·mL-1; control: 37.0±21.1 cells·mL-1; NF ECV: 198.6±94.9 cells·mL-1) and in lung tissue (ECV: 25.7±3.3 cells·mm-3; control: 4.8±1.1 cells·mm-3; NF ECV: 14.1±2.2 cells·mm-3). BALF cytokines were predominantly increased by ECV. Moreover, ECV caused significant changes in lung structure and function (e.g. increase in airspace by 17.5±1.4% compared to control), similar to mild tobacco smoke-induced alterations, which also could be detected in the NF ECV group, albeit to a lesser degree. In contrast, the pulmonary vasculature was not significantly affected by ECV or NF ECV. CONCLUSIONS: NF ECV components induce cell type-specific effects and mild pulmonary alterations, while inclusion of nicotine induces significant endothelial damage, inflammation and parenchymal alterations.


Subject(s)
E-Cigarette Vapor , Electronic Nicotine Delivery Systems , Pneumonia , Humans , Animals , Mice , Nicotine/adverse effects , E-Cigarette Vapor/adverse effects , E-Cigarette Vapor/metabolism , Pneumonia/etiology , Pneumonia/metabolism , Lung/metabolism , Plant Extracts/metabolism , Plant Extracts/pharmacology
4.
Eur Respir J ; 59(4)2022 04.
Article in English | MEDLINE | ID: mdl-34475225

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a common complication of COPD, associated with increased mortality and morbidity. Intriguingly, pulmonary vascular alterations have been suggested to drive emphysema development. Previously, we identified inducible nitric oxide synthase (iNOS) as an essential enzyme for development and reversal of smoke-induced PH and emphysema, and showed that iNOS expression in bone-marrow-derived cells drives pulmonary vascular remodelling, but not parenchymal destruction. In this study, we aimed to identify the iNOS-expressing cell type driving smoke-induced PH and to decipher pro-proliferative pathways involved. METHODS: To address this question we used 1) myeloid-cell-specific iNOS knockout mice in chronic smoke exposure and 2) co-cultures of macrophages and pulmonary artery smooth muscle cells (PASMCs) to decipher underlying signalling pathways. RESULTS: Myeloid-cell-specific iNOS knockout prevented smoke-induced PH but not emphysema in mice. Moreover, iNOS deletion in myeloid cells ameliorated the increase in expression of CD206, a marker of M2 polarisation, on interstitial macrophages. Importantly, the observed effects on lung macrophages were hypoxia-independent, as these mice developed hypoxia-induced PH. In vitro, smoke-induced PASMC proliferation in co-cultures with M2-polarised macrophages could be abolished by iNOS deletion in phagocytic cells, as well as by extracellular signal-regulated kinase inhibition in PASMCs. Crucially, CD206-positive and iNOS-positive macrophages accumulated in proximity of remodelled vessels in the lungs of COPD patients, as shown by immunohistochemistry. CONCLUSION: In summary, our results demonstrate that iNOS deletion in myeloid cells confers protection against PH in smoke-exposed mice and provide evidence for an iNOS-dependent communication between M2-like macrophages and PASMCs in underlying pulmonary vascular remodelling.


Subject(s)
Emphysema , Hypertension, Pulmonary , Pulmonary Emphysema , Animals , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/prevention & control , Hypoxia , Macrophages/metabolism , Mice , Mice, Knockout , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Smoke/adverse effects , Nicotiana/metabolism , Vascular Remodeling
5.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L903-L915, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33760647

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major cause of death and a still incurable disease, comprising emphysema and chronic bronchitis. In addition to airflow limitation, patients with COPD can suffer from pulmonary hypertension (PH). Doxycycline, an antibiotic from the tetracycline family, in addition to its pronounced antimicrobial activity, acts as a matrix metalloproteinase (MMP) inhibitor and has anti-inflammatory properties. Furthermore, doxycycline treatment exhibited a beneficial effect in several preclinical cardiovascular disease models. In preclinical research, doxycycline is frequently employed for gene expression modulation in Tet-On/Tet-Off transgenic animal models. Therefore, it is crucial to know whether doxycycline treatment in Tet-On/Tet-Off systems has effects independent of gene expression modulation by such systems. Against this background, we assessed the possible curative effects of long-term doxycycline administration in a mouse model of chronic CS exposure. Animals were exposed to cigarette smoke (CS) for 8 mo and then subsequently treated with doxycycline for additional 3 mo in room air conditions. Doxycycline decreased the expression of MMPs and general pro-inflammatory markers in the lungs from CS-exposed mice. This downregulation was, however, insufficient to ameliorate CS-induced emphysema or PH. Tet-On/Tet-Off induction by doxycycline in such models is a feasible genetic approach to study curative effects at least in established CS-induced emphysema and PH. However, we report several parameters that are influenced by doxycycline and use of a Tet-On/Tet-Off system when evaluating those parameters should be interpreted with caution.


Subject(s)
Cigarette Smoking , Doxycycline/pharmacology , Hypertension, Pulmonary , Pulmonary Emphysema , Animals , Cigarette Smoking/drug therapy , Cigarette Smoking/genetics , Cigarette Smoking/metabolism , Cigarette Smoking/pathology , Disease Models, Animal , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Mice , Mice, Transgenic , Pulmonary Emphysema/drug therapy , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/pathology , Time Factors
6.
Eur Respir J ; 53(6)2019 06.
Article in English | MEDLINE | ID: mdl-30956210

ABSTRACT

Chronic obstructive pulmonary disease (COPD), which comprises the phenotypes of chronic bronchitis and emphysema, is often associated with pulmonary hypertension (PH). However, currently, no approved therapy exists for PH-COPD. Signalling of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) axis plays an important role in PH and COPD.We investigated the treatment effect of riociguat, which promotes the NO-cGMP pathway, in the mouse model of smoke-induced PH and emphysema in a curative approach, and retrospectively analysed the effect of riociguat treatment on PH in single patients with PH-COPD.In mice with established PH and emphysema (after 8 months of cigarette smoke exposure), riociguat treatment for another 3 months fully reversed PH. Moreover, histological hallmarks of emphysema were decreased. Microarray analysis revealed involvement of different signalling pathways, e.g. related to matrix metalloproteinases (MMPs). MMP activity was decreased in vivo by riociguat. In PH-COPD patients treated with riociguat (n=7), the pulmonary vascular resistance, airway resistance and circulating MMP levels decreased, while oxygenation at rest was not significantly changed.Riociguat may be beneficial for treatment of PH-COPD. Further long-term prospective studies are necessary to investigate the tolerability, efficacy on functional parameters and effect specifically on pulmonary emphysema in COPD patients.


Subject(s)
Cyclic GMP/metabolism , Hypertension, Pulmonary/drug therapy , Nitric Oxide/metabolism , Pulmonary Disease, Chronic Obstructive/complications , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Animals , Disease Models, Animal , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/physiopathology , Retrospective Studies , Signal Transduction , Soluble Guanylyl Cyclase/metabolism , Translational Research, Biomedical
7.
J Pers Med ; 13(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37888057

ABSTRACT

Pulmonary hypertension (PH) is a progressive and life-threatening disease characterized by increased pulmonary arterial pressure, which leads to right heart hypertrophy and eventually right heart failure [...].

8.
Cells ; 12(9)2023 04 28.
Article in English | MEDLINE | ID: mdl-37174678

ABSTRACT

Combined pulmonary fibrosis and emphysema (CPFE) is a recently recognized syndrome that, as its name indicates, involves the existence of both interstitial lung fibrosis and emphysema in one individual, and is often accompanied by pulmonary hypertension. This debilitating, progressive condition is most often encountered in males with an extensive smoking history, and is presented by dyspnea, preserved lung volumes, and contrastingly impaired gas exchange capacity. The diagnosis of the disease is based on computed tomography imaging, demonstrating the coexistence of emphysema and interstitial fibrosis in the lungs, which might be of various types and extents, in different areas of the lung and several relative positions to each other. CPFE bears high mortality and to date, specific and efficient treatment options do not exist. In this review, we will summarize current knowledge about the clinical attributes and manifestations of CPFE. Moreover, we will focus on pathophysiological and pathohistological lung phenomena and suspected etiological factors of this disease. Finally, since there is a paucity of preclinical research performed for this particular lung pathology, we will review existing animal studies and provide suggestions for the development of additional in vivo models of CPFE syndrome.


Subject(s)
Emphysema , Hypertension, Pulmonary , Pulmonary Emphysema , Pulmonary Fibrosis , Male , Humans , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/pathology , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/complications , Pulmonary Emphysema/pathology , Lung/pathology , Emphysema/complications
9.
Cells ; 12(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36611917

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. In addition to chronic bronchitis and emphysema, patients often develop at least mild pulmonary hypertension (PH). We previously demonstrated that inhibition of inducible nitric oxide synthase (iNOS) prevents and reverses emphysema and PH in mice. Interestingly, strong iNOS upregulation was found in alveolar epithelial type II cells (AECII) in emphysematous murine lungs, and peroxynitrite, which can be formed from iNOS-derived NO, was shown to induce AECII apoptosis in vitro. However, the specific cell type(s) that drive(s) iNOS-dependent lung regeneration in emphysema/PH has (have) not been identified yet. AIM: we tested whether iNOS knockout in AECII affects established elastase-induced emphysema in mice. METHODS: four weeks after a single intratracheal instillation of porcine pancreatic elastase for the induction of emphysema and PH, we induced iNOS knockout in AECII in mice, and gave an additional twelve weeks for the potential recovery. RESULTS: iNOS knockout in AECII did not reduce elastase-induced functional and structural lung changes such as increased lung compliance, decreased mean linear intercept and increased airspace, decreased right ventricular function, increased right ventricular systolic pressure and increased pulmonary vascular muscularization. In vitro, iNOS inhibition did not reduce apoptosis of AECII following exposure to a noxious stimulus. CONCLUSION: taken together, our data demonstrate that iNOS deletion in AECII is not sufficient for the regeneration of emphysematous murine lungs, and suggest that iNOS expression in pulmonary vascular or stromal cells might be critically important in this regard.


Subject(s)
Emphysema , Pulmonary Emphysema , Mice , Swine , Animals , Pancreatic Elastase/metabolism , Nitric Oxide Synthase Type II/metabolism , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/metabolism , Epithelium/metabolism
10.
Cells ; 11(19)2022 09 20.
Article in English | MEDLINE | ID: mdl-36230894

ABSTRACT

The role of microparticles (MPs) and cold in high altitude pulmonary hypertension (HAPH) remains unexplored. We investigated the impact of long-term cold exposure on the pulmonary circulation in lowlanders and high-altitude natives and the role of MPs. Pulmonary hemodynamics were evaluated using Doppler echocardiography at the end of the colder and warmer seasons. We further examined the miRNA content of MPs isolated from the study participants and studied their effects on human pulmonary artery smooth muscle (hPASMCs) and endothelial cells (hPAECs). Long-term exposure to cold environment was associated with an enhanced pulmonary artery pressure in highlanders. Plasma levels of CD62E-positive and CD68-positive MPs increased in response to cold in lowlanders and HAPH highlanders. The miRNA-210 expression contained in MPs differentially changed in response to cold in lowlanders and highlanders. MPs isolated from lowlanders and highlanders increased proliferation and reduced apoptosis of hPASMCs. Further, MPs isolated from warm-exposed HAPH highlanders and cold-exposed highlanders exerted the most pronounced effects on VEGF expression in hPAECs. We demonstrated that prolonged exposure to cold is associated with elevated pulmonary artery pressures, which are most pronounced in high-altitude residents. Further, the numbers of circulating MPs are differentially increased in lowlanders and HAPH highlanders during the colder season.


Subject(s)
Hypertension, Pulmonary , MicroRNAs , Altitude , Altitude Sickness , Endothelial Cells , Humans , Seasons , Vascular Endothelial Growth Factor A
11.
Br J Pharmacol ; 178(1): 132-151, 2021 01.
Article in English | MEDLINE | ID: mdl-31976545

ABSTRACT

Even mild pulmonary hypertension (PH) is associated with increased mortality and morbidity in patients with chronic obstructive pulmonary disease (COPD). However, the underlying mechanisms remain elusive; therefore, specific and efficient treatment options are not available. Therapeutic approaches tested in the clinical setting, including long-term oxygen administration and systemic vasodilators, gave disappointing results and might be only beneficial for specific subgroups of patients. Preclinical studies identified several therapeutic approaches for the treatment of PH in COPD. Further research should provide deeper insight into the complex pathophysiological mechanisms driving vascular alterations in COPD, especially as such vascular (molecular) alterations have been previously suggested to affect COPD development. This review summarizes the current understanding of the pathophysiology of PH in COPD and gives an overview of the available treatment options and recent advances in preclinical studies. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.


Subject(s)
Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Humans , Hypertension, Pulmonary/drug therapy , Oxygen , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/drug therapy , Risk Factors , Vasodilator Agents/therapeutic use
12.
Nat Metab ; 2(6): 532-546, 2020 06.
Article in English | MEDLINE | ID: mdl-32694733

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and death worldwide. Peroxynitrite, formed from nitric oxide, which is derived from inducible nitric oxide synthase, and superoxide, has been implicated in the development of emphysema, but the source of the superoxide was hitherto not characterized. Here, we identify the non-phagocytic NADPH oxidase organizer 1 (NOXO1) as the superoxide source and an essential driver of smoke-induced emphysema and pulmonary hypertension development in mice. NOXO1 is consistently upregulated in two models of lung emphysema, Cybb (also known as NADPH oxidase 2, Nox2)-knockout mice and wild-type mice with tobacco-smoke-induced emphysema, and in human COPD. Noxo1-knockout mice are protected against tobacco-smoke-induced pulmonary hypertension and emphysema. Quantification of superoxide, nitrotyrosine and multiple NOXO1-dependent signalling pathways confirm that peroxynitrite formation from nitric oxide and superoxide is a driver of lung emphysema. Our results suggest that NOXO1 may have potential as a therapeutic target in emphysema.


Subject(s)
Adaptor Proteins, Signal Transducing/drug effects , Emphysema/drug therapy , Emphysema/genetics , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/drug effects , Emphysema/etiology , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Peroxynitrous Acid/metabolism , Pulmonary Disease, Chronic Obstructive/complications , Signal Transduction/genetics , Superoxides/metabolism , Tobacco Smoke Pollution/adverse effects , Tyrosine/analogs & derivatives , Tyrosine/metabolism
14.
PLoS One ; 12(9): e0184686, 2017.
Article in English | MEDLINE | ID: mdl-28926586

ABSTRACT

SOX14 is a member of the SOX family of transcription factors mainly involved in the regulation of neural development. Recently, it became evident that SOX14 is one of four hypermethylated genes in cervical carcinoma, considered as a tumor suppressor candidate in this type of malignancy. In this paper we elucidated the role of SOX14 in the regulation of malignant properties of cervical carcinoma cells in vitro. Functional analysis performed in HeLa cells revealed that SOX14 overexpression decreased viability and promoted apoptosis through altering the expression of apoptosis related genes. Our results demonstrated that overexpression of SOX14 initiated accumulation of p53, demonstrating potential cross-talk between SOX14 and the p53 signaling pathway. Further analysis unambiguously showed that SOX14 triggered posttranslational modification of p53 protein, as detected by the significantly increased level of phospho-p53 (Ser-15) in SOX14-overexpressing HeLa cells. Moreover, the obtained results revealed that SOX14 activated p53 protein, which was confirmed by elevated p21Waf1/Cip1, a well known target gene of p53. This study advances our understanding about the role of SOX14 and might explain the molecular mechanism by which this transcription factor could exert tumor suppressor properties in cervical carcinoma.


Subject(s)
SOXB2 Transcription Factors/metabolism , Tumor Suppressor Protein p53/metabolism , Apoptosis , Base Sequence , Binding Sites , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , HeLa Cells , Humans , Methylation , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic , SOXB2 Transcription Factors/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL