Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 109(15): 155004, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-23102319

ABSTRACT

Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 µm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.

2.
Phys Rev Lett ; 89(8): 085001, 2002 Aug 19.
Article in English | MEDLINE | ID: mdl-12190474

ABSTRACT

Laser-driven experiments are described which probe the interaction of a very strong shock with a spherical density inhomogeneity. The interaction is viewed from two orthogonal directions enabling visualization of both the initial distortion of the sphere into a double vortex ring structure as well as the onset of an azimuthal instability that ultimately results in the three-dimensional breakup of the ring. The experimental results are compared with 3D numerical simulations and are shown to be in remarkable agreement with the incompressible theory of Widnall et al. [J. Fluid Mech. 66, 35 (1974)].

3.
Phys Rev Lett ; 92(7): 075002, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14995863

ABSTRACT

A new method for shockless compression and acceleration of solid materials is presented. A plasma reservoir pressurized by a laser-driven shock unloads across a vacuum gap and piles up against an Al sample thus providing the drive. The rear surface velocity of the Al was measured with a line VISAR, and used to infer load histories. These peaked between approximately 0.14 and 0.5 Mbar with strain rates approximately 10(6)-10(8) s(-1). Detailed simulations suggest that apart from surface layers the samples can remain close to the room temperature isentrope. The experiments, analysis, and future prospects are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL