Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angiogenesis ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922557

ABSTRACT

BACKGROUND: Pathological angiogenesis causes significant vision loss in neovascular age-related macular degeneration and other retinopathies with neovascularization (NV). Neuronal/glial-vascular interactions influence the release of angiogenic and neurotrophic factors. We hypothesized that botulinum neurotoxin serotype A (BoNT/A) modulates pathological endothelial cell proliferation through glial cell activation and growth factor release. METHODS: A laser-induced choroidal NV (CNV) was employed to investigate the anti-angiogenic effects of BoNT/A. Fundus fluorescence angiography, immunohistochemistry, and real-time PCR were used to assess BoNT/A efficacy in inhibiting CNV and the molecular mechanisms underlying this inhibition. Neuronal and glial suppressor of cytokine signaling 3 (SOCS3) deficient mice were used to investigate the molecular mechanisms of BoNT/A in inhibiting CNV via SOCS3. FINDINGS: In laser-induced CNV mice with intravitreal BoNT/A treatment, CNV lesions decreased > 30%; vascular leakage and retinal glial activation were suppressed; and Socs3 mRNA expression was induced while vascular endothelial growth factor A (Vegfa) mRNA expression was suppressed. The protective effects of BoNT/A on CNV development were diminished in mice lacking neuronal/glial SOCS3. CONCLUSION: BoNT/A suppressed laser-induced CNV and glial cell activation, in part through SOCS3 induction in neuronal/glial cells. BoNT/A treatment led to a decrease of pro-angiogenic factors, including VEGFA, highlighting the potential of BoNT/A as a therapeutic intervention for pathological angiogenesis in retinopathies.

3.
J AAPOS ; : 103951, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866323

ABSTRACT

Congenital fibrosis of the extraocular muscles (CFEOM) type 1 is associated with heterozygous missense variants in KIF21A, which encodes a kinesin-like motor protein. Individuals with CFEOM1 have severe paralysis of upgaze and ptosis, resulting in a pronounced chin-up head posture. There can also be limitations of horizontal eye movements. Loss of function of KIF26A, an unconventional kinesin motor protein that lacks ATP-dependent motor activity, has been recently reported to cause a spectrum of congenital brain malformations associated with defects in migration, localization, and growth of excitatory neurons. It has also been associated with megacolon resembling Hirschsprung's disease. We report the case of a boy with homozygous loss of function of KIF26A with restricted eye movements, specifically restricted upgaze and downgaze with variable nystagmus and dissociated vertical eye movements. This case represents a congenital cranial dysinnervation disorder, most similar to CFEOM, and is the first report of a congenital cranial dysinnervation disorder caused by a kinesin other than KIF21A.

SELECTION OF CITATIONS
SEARCH DETAIL