Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nature ; 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322662

ABSTRACT

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras1,2 (LYTACs) and cytokine receptor-targeting chimeras3 (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor. Here we describe computational design approaches for endocytosis-triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for insulin-like growth factor 2 receptor (IGF2R) and asialoglycoprotein receptor (ASGPR), sortilin and transferrin receptors, and show that fusing these tags to soluble or transmembrane target protein binders leads to lysosomal trafficking and target degradation. As these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. EndoTag fusion to a PD-L1 antibody considerably increases efficacy in a mouse tumour model compared to antibody alone. The modularity and genetic encodability of EndoTags enables AND gate control for higher-specificity targeted degradation, and the localized secretion of degraders from engineered cells. By promoting endocytosis, EndoTag fusion increases signalling through an engineered ligand-receptor system by nearly 100-fold. EndoTags have considerable therapeutic potential as targeted degradation inducers, signalling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody-drug and antibody-RNA conjugates.

2.
Blood ; 138(14): 1258-1268, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34077951

ABSTRACT

Hemophilia A is a bleeding disorder resulting from deficient factor VIII (FVIII), which normally functions as a cofactor to activated factor IX (FIXa) that facilitates activation of factor X (FX). To mimic this property in a bispecific antibody format, a screening was conducted to identify functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional and biophysical properties. The resulting bispecific antibody (Mim8) assembled efficiently with FIXa and FX on membranes, and supported activation with an apparent equilibrium dissociation constant of 16 nM. Binding affinity with FIXa and FX in solution was much lower, with equilibrium dissociation constant values for FIXa and FX of 2.3 and 1.5 µM, respectively. In addition, the activity of Mim8 was dependent on stimulatory activity contributed by the anti-FIXa arm, which enhanced the proteolytic activity of FIXa by 4 orders of magnitude. In hemophilia A plasma and whole blood, Mim8 normalized thrombin generation and clot formation, with potencies 13 and 18 times higher than a sequence-identical analogue of emicizumab. A similar potency difference was observed in a tail vein transection model in hemophilia A mice, whereas reduction of bleeding in a severe tail-clip model was observed only for Mim8. Furthermore, the pharmacokinetic parameters of Mim8 were investigated and a half-life of 14 days shown in cynomolgus monkeys. In conclusion, Mim8 is an activated FVIII mimetic with a potent and efficacious hemostatic effect based on preclinical data.


Subject(s)
Antibodies, Bispecific/therapeutic use , Hemophilia A/drug therapy , Hemorrhage/drug therapy , Animals , Factor IXa/antagonists & inhibitors , Factor VIIIa/therapeutic use , Factor X/antagonists & inhibitors , Female , Humans , Male , Mice, Inbred C57BL
3.
Nature ; 538(7625): 329-335, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27626386

ABSTRACT

Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.


Subject(s)
Computer-Aided Design , Drug Design , Peptides/chemistry , Peptides/chemical synthesis , Protein Stability , Amino Acid Motifs , Crystallography, X-Ray , Cyclization , Disulfides/chemistry , Hot Temperature , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Peptides/genetics , Peptides, Cyclic/chemistry , Peptides, Cyclic/genetics , Protein Denaturation , Protein Structure, Secondary , Protein Structure, Tertiary , Stereoisomerism
4.
Biochemistry ; 58(24): 2750-2759, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31117388

ABSTRACT

Aggregation can be a major challenge in the development of antibody-based pharmaceuticals as it can compromise the quality of the product during bioprocessing, formulation, and drug administration. To avoid aggregation, developability assessment is often run in parallel with functional optimization in the early screening phases to flag and deselect problematic molecules. As developability assessment can be demanding with regard to time and resources, there is a high focus on the development of molecule design strategies for engineering molecules with a high developability potential. Previously, Dudgeon et al. [(2012) Proc. Natl. Acad. Sci. U. S. A. 109, 10879-10884] demonstrated how Asp substitutions at specific positions in human variable domains and single-chain variable fragments could decrease the aggregation propensity. Here, we have investigated whether these Asp substitutions would improve the developability potential of a murine antigen binding fragment (Fab). A full combinatorial library consisting of 393 Fab variants with single, double, and triple Asp substitutions was first screened in silico with Rosetta; thereafter, 26 variants with the highest predicted thermodynamic stability were selected for production. All variants were subjected to a set of developability studies. Interestingly, most variants had thermodynamic stability on par with or improved relative to that of the wild type. Twenty-five of the variants exhibited improved nonspecificity. Half of the variants exhibited improved aggregation resistance. Strikingly, while we observed remarkable improvement in the developability potential, the Asp substitutions had no substantial effect on the antigenic binding affinity. Altogether, by combining the insertion of negative charges and the in silico screen based on computational models, we were able to improve the developability of the Fab rapidly.


Subject(s)
Aspartic Acid/chemistry , Immunoglobulin Fab Fragments/chemistry , Amino Acid Substitution , Animals , Antigens/immunology , Computer Simulation , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Mice , Peptide Library , Protein Multimerization/genetics , Protein Stability
5.
Arch Toxicol ; 90(11): 2711-2724, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26612364

ABSTRACT

The nearly 200,000 fatalities following exposure to organophosphorus (OP) pesticides each year and the omnipresent danger of a terroristic attack with OP nerve agents emphasize the demand for the development of effective OP antidotes. Standard treatments for intoxicated patients with a combination of atropine and an oxime are limited in their efficacy. Thus, research focuses on developing catalytic bioscavengers as an alternative approach using OP-hydrolyzing enzymes such as Brevundimonas diminuta phosphotriesterase (PTE). Recently, a PTE mutant dubbed C23 was engineered, exhibiting reversed stereoselectivity and high catalytic efficiency (k cat/K M) for the hydrolysis of the toxic enantiomers of VX, CVX, and VR. Additionally, C23's ability to prevent systemic toxicity of VX using a low protein dose has been shown in vivo. In this study, the catalytic efficiencies of V-agent hydrolysis by two newly selected PTE variants were determined. Moreover, in order to establish trends in sequence-activity relationships along the pathway of PTE's laboratory evolution, we examined k cat/K M values of several variants with a number of V-type and G-type nerve agents as well as with different OP pesticides. Although none of the new PTE variants exhibited k cat/K M values >107 M-1 min-1 with V-type nerve agents, which is required for effective prophylaxis, they were improved with VR relative to previously evolved variants. The new variants detoxify a broad spectrum of OPs and provide insight into OP hydrolysis and sequence-activity relationships.


Subject(s)
Bacterial Proteins/metabolism , Nerve Agents/metabolism , Organophosphorus Compounds/metabolism , Pesticides/metabolism , Phosphoric Triester Hydrolases/metabolism , Pseudomonas/enzymology , Amino Acid Substitution , Bacterial Proteins/genetics , Biocatalysis , Clone Cells , Computational Biology , Directed Molecular Evolution , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/metabolism , High-Throughput Screening Assays , Inactivation, Metabolic , Molecular Docking Simulation , Molecular Structure , Mutation , Nerve Agents/chemistry , Nerve Agents/toxicity , Organophosphorus Compounds/chemistry , Peptide Library , Pesticides/chemistry , Pesticides/toxicity , Phosphoric Triester Hydrolases/genetics , Protein Engineering , Recombinant Fusion Proteins/metabolism , Stereoisomerism , Substrate Specificity
6.
Nat Chem Biol ; 8(3): 294-300, 2012 Feb 05.
Article in English | MEDLINE | ID: mdl-22306579

ABSTRACT

The ability to redesign enzymes to catalyze noncognate chemical transformations would have wide-ranging applications. We developed a computational method for repurposing the reactivity of metalloenzyme active site functional groups to catalyze new reactions. Using this method, we engineered a zinc-containing mouse adenosine deaminase to catalyze the hydrolysis of a model organophosphate with a catalytic efficiency (k(cat)/K(m)) of ~10(4) M(-1) s(-1) after directed evolution. In the high-resolution crystal structure of the enzyme, all but one of the designed residues adopt the designed conformation. The designed enzyme efficiently catalyzes the hydrolysis of the R(P) isomer of a coumarinyl analog of the nerve agent cyclosarin, and it shows marked substrate selectivity for coumarinyl leaving groups. Computational redesign of native enzyme active sites complements directed evolution methods and offers a general approach for exploring their untapped catalytic potential for new reactivities.


Subject(s)
Adenosine Deaminase/metabolism , Computer Simulation , Computer-Aided Design , Metalloproteins/metabolism , Organophosphorus Compounds/metabolism , Zinc/chemistry , Adenosine Deaminase/chemistry , Animals , Biocatalysis , Catalytic Domain , Computational Biology , Hydrolysis , Metalloproteins/chemistry , Mice , Models, Molecular , Molecular Conformation , Organophosphorus Compounds/chemistry , Zinc/metabolism
7.
Proc Natl Acad Sci U S A ; 108(31): 12717-22, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21768343

ABSTRACT

Linear rate-equilibrium (RE) relations, also known as linear free energy relations, are widely observed in chemical reactions, including protein folding, enzymatic catalysis, and channel gating. Despite the widespread occurrence of linear RE relations, the principles underlying the linear relation between changes in activation and equilibrium energy in macromolecular reactions remain enigmatic. When examining amphiphile regulation of gramicidin channel gating in lipid bilayers, we noted that the gating process could be described by a linear RE relation with a simple geometric interpretation. This description is possible because the gating process provides a well-understood reaction, in which structural changes in a bilayer-embedded model protein can be studied at the single-molecule level. It is thus possible to obtain quantitative information about the energetics of the reaction transition state and its position on a spatial coordinate. It turns out that the linear RE relation for the gramicidin monomer-dimer reaction can be understood, and the quantitative relation between changes in activation energy and equilibrium energy can be interpreted, by considering the effects of amphiphiles on the changes in bilayer elastic energy associated with channel gating. We are not aware that a similar simple mechanistic explanation of a linear RE relation has been provided for a chemical reaction in a macromolecule. RE relations generally should be useful for examining how amphiphile-induced changes in bilayer properties modulate membrane protein folding and function, and for distinguishing between direct (e.g., due to binding) and indirect (bilayer-mediated) effects.


Subject(s)
Gramicidin/chemistry , Ion Channels/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Algorithms , Capsaicin/pharmacology , Chromans/pharmacology , Energy Transfer/drug effects , Genistein/pharmacology , Hydrophobic and Hydrophilic Interactions , Ion Channel Gating/drug effects , Kinetics , Models, Chemical , Octoxynol/pharmacology , Phosphatidylcholines/chemistry , Protein Folding , Rosiglitazone , Thiazolidinediones/pharmacology , Troglitazone
8.
ACS Omega ; 9(34): 36787-36794, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39220547

ABSTRACT

To address the challenges of short half-life, immunogenicity, and nonspecific distribution, chemical modifications of peptide and protein-based drugs have emerged as a versatile strategy for improving their therapeutic efficacy. One such modification involves the derivatization of peptides and proteins with fatty acids, which can protract their half-life, modify their biodistribution, and potentially enable targeted delivery to specific tissues or disease sites of interest. However, the present strategies for the synthesis of such synthetically modified biologics require numerous rounds of experimental testing and often yield unstable, inactive, or heterogeneous products. To address the inefficiencies in designing modified biologics, we developed a hybrid computational workflow that integrates RosettaMatch from the Rosetta suite of protein modeling tools with molecular dynamics (MD) simulations. This approach not only reduces the number of amino acid positions that need to be experimentally tested by targeting only the most promising candidates for modification but also expedites the design of chemically modified biologics with the desired properties, ensuring a rapid and cost-effective development cycle. Although we demonstrate the utility of our method on a peptide therapeutic, GLP-1, with different fatty acid derivatizations, this straightforward approach has the potential to streamline the design process of a diverse range of chemically modified therapeutics, enabling tailored enhancements to their pharmacokinetic properties.

9.
Protein Sci ; 32(10): e4726, 2023 10.
Article in English | MEDLINE | ID: mdl-37421602

ABSTRACT

Efficient identification of epitopes is crucial for drug discovery and design as it enables the selection of optimal epitopes, expansion of lead antibody diversity, and verification of binding interface. Although high-resolution low throughput methods like x-ray crystallography can determine epitopes or protein-protein interactions accurately, they are time-consuming and can only be applied to a limited number of complexes. To overcome these limitations, we have developed a rapid computational method that incorporates N-linked glycans to mask epitopes or protein interaction surfaces, thereby providing a mapping of these regions. Using human coagulation factor IXa (fIXa) as a model system, we computationally screened 158 positions and expressed 98 variants to test experimentally for epitope mapping. We were able to delineate epitopes rapidly and reliably through the insertion of N-linked glycans that efficiently disrupted binding in a site-selective manner. To validate the efficacy of our method, we conducted ELISA experiments and high-throughput yeast surface display assays. Furthermore, x-ray crystallography was employed to verify the results, thereby recapitulating through the method of N-linked glycans a coarse-grained mapping of the epitope.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Humans , Epitopes/chemistry , Epitope Mapping/methods , High-Throughput Screening Assays/methods
10.
bioRxiv ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37781607

ABSTRACT

Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by interaction with endogenous ligands. Therapeutic approaches such as LYTAC1,2 and KineTAC3, have taken advantage of this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. While powerful, these approaches can be limited by possible competition with the endogenous ligand(s), the requirement in some cases for chemical modification that limits genetic encodability and can complicate manufacturing, and more generally, there may not be natural ligands which stimulate endocytosis through a given receptor. Here we describe general protein design approaches for designing endocytosis triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for the IGF-2R, ASGPR, Sortillin, and Transferrin receptors, and show that fusing these tags to proteins which bind to soluble or transmembrane protein leads to lysosomal trafficking and target degradation; as these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. The modularity and genetic encodability of EndoTags enables AND gate control for higher specificity targeted degradation, and the localized secretion of degraders from engineered cells. The tunability and modularity of our genetically encodable EndoTags should contribute to deciphering the relationship between receptor engagement and cellular trafficking, and they have considerable therapeutic potential as targeted degradation inducers, signaling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody drug and RNA conjugates.

11.
Biochim Biophys Acta ; 1808(10): 2600-7, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21683056

ABSTRACT

This study describes the interaction between sodium dodecyl sulfate (SDS) and membrane proteins reconstituted into large unilamellar lipid vesicles and detergent micelles studied by circular dichroism (CD) and polarity sensitive probe labeling. Specifically, we carried out a comparative study of two aquaporins with high structural homology SoPIP2;1 and AqpZ using identical reconstitution conditions. Our CD results indicate that SDS, when added to membrane-reconstituted aquaporins in concentrations below the SDS critical micelle concentration (CMC, ~8mM), causes helical rearrangements of both aquaporins. However, we do not find compelling evidence for unfolding. In contrast when SDS is added to detergent stabilized aquaporins, SoPIP2;1 partly unfolds, while AqpZ secondary structure is unaffected. Using a fluorescent polarity sensitive probe (Badan) we show that SDS action on membrane reconstituted SoPIP2;1 as well as AqpZ is associated with initial increased hydrophobic interactions in protein transmembrane (TM) spanning regions up to a concentration of 0.1× CMC. At higher SDS concentrations TM hydrophobic interactions, as reported by Badan, decrease and reach a plateau from SDS CMC up to 12.5× CMC. Combined, our results show that SDS does not unfold neither SoPIP2;1 nor AqpZ during transition from a membrane reconstituted form to a detergent stabilized state albeit the native folds are changed.


Subject(s)
Aquaporins/chemistry , Escherichia coli/chemistry , Sodium Dodecyl Sulfate/chemistry , Spinacia oleracea/chemistry , Circular Dichroism , Fluorescent Dyes , Spectrometry, Fluorescence
12.
Nat Commun ; 13(1): 572, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102143

ABSTRACT

Substrate inhibition of enzymes can be a major obstacle to the production of valuable chemicals in engineered microorganisms. Here, we show substrate inhibition of lycopene cyclase as the main limitation in carotenoid biosynthesis in Yarrowia lipolytica. To overcome this bottleneck, we exploit two independent approaches. Structure-guided protein engineering yields a variant, Y27R, characterized by complete loss of substrate inhibition without reduction of enzymatic activity. Alternatively, establishing a geranylgeranyl pyrophosphate synthase-mediated flux flow restrictor also prevents the onset of substrate inhibition by diverting metabolic flux away from the inhibitory metabolite while maintaining sufficient flux towards product formation. Both approaches result in high levels of near-exclusive ß-carotene production. Ultimately, we construct strains capable of producing 39.5 g/L ß-carotene at a productivity of 0.165 g/L/h in bioreactor fermentations (a 1441-fold improvement over the initial strain). Our findings provide effective approaches for removing substrate inhibition in engineering pathways for efficient synthesis of natural products.


Subject(s)
Lycopene/metabolism , Yarrowia/metabolism , Acetyl Coenzyme A/metabolism , Bioreactors , Carbon/metabolism , Cytosol/metabolism , Farnesyltranstransferase/metabolism , Fermentation , Glucose/deficiency , Intramolecular Lyases/metabolism , Lipid Metabolism , Lipids/biosynthesis , Lycopene/chemistry , Metabolic Flux Analysis , Protein Engineering , Substrate Specificity , Terpenes/metabolism
13.
Sci Rep ; 12(1): 3747, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260627

ABSTRACT

Proteases play a major role in many vital physiological processes. Trypsin-like serine proteases (TLPs), in particular, are paramount in proteolytic cascade systems such as blood coagulation and complement activation. The structural topology of TLPs is highly conserved, with the trypsin fold comprising two ß-barrels connected by a number of variable surface-exposed loops that provide a surprising capacity for functional diversity and substrate specificity. To expand our understanding of the roles these loops play in substrate and co-factor interactions, we employ a systematic methodology akin to the natural truncations and insertions observed through evolution of TLPs. The approach explores a larger deletion space than classical random or directed mutagenesis. Using FVIIa as a model system, deletions of 1-7 amino acids through the surface exposed 170 loop, a vital allosteric regulator, was introduced. All variants were extensively evaluated by established functional assays and computational loop modelling with Rosetta. The approach revealed detailed structural and functional insights recapitulation and expanding on the main findings in relation to 170 loop functions elucidated over several decades using more cumbersome crystallization and single deletion/mutation methodologies. The larger deletion space was key in capturing the most active variant, which unexpectedly had a six-amino acid truncation. This variant would have remained undiscovered if only 2-3 deletions were considered, supporting the usefulness of the methodology in general protease engineering approaches. Our findings shed further light on the complex role that surface-exposed loops play in TLP function and supports the important role of loop length in the regulation and fine-tunning of enzymatic function throughout evolution.


Subject(s)
Factor VIIa , Serine Endopeptidases , Serine Endopeptidases/metabolism , Substrate Specificity , Trypsin/metabolism
14.
aBIOTECH ; 2(3): 215-225, 2021 Sep.
Article in English | MEDLINE | ID: mdl-36303887

ABSTRACT

Cytochrome P450s (P450s) are the most versatile catalysts utilized by plants to produce structurally and functionally diverse metabolites. Given the high degree of gene redundancy and challenge to functionally characterize plant P450s, protein engineering is used as a complementary strategy to study the mechanisms of P450-mediated reactions, or to alter their functions. We previously proposed an approach of engineering plant P450s based on combining high-accuracy homology models generated by Rosetta combined with data-driven design using evolutionary information of these enzymes. With this strategy, we repurposed a multi-functional P450 (CYP87D20) into a monooxygenase after redesigning its active site. Since most plant P450s are membrane-anchored proteins that are adapted to the micro-environments of plant cells, expressing them in heterologous hosts usually results in problems of expression or activity. Here, we applied computational design to tackle these issues by simultaneous optimization of the protein surface and active site. After screening 17 variants, effective substitutions of surface residues were observed to improve both expression and activity of CYP87D20. In addition, the identified substitutions were additive and by combining them a highly efficient C11 hydroxylase of cucurbitadienol was created to participate in the mogrol biosynthesis. This study shows the importance of considering the interplay between surface and active site residues for P450 engineering. Our integrated strategy also opens an avenue to create more tailoring enzymes with desired functions for the metabolic engineering of high-valued compounds like mogrol, the precursor of natural sweetener mogrosides. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00056-z.

15.
Nat Commun ; 12(1): 6215, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711827

ABSTRACT

In phenylketonuria (PKU) patients, a genetic defect in the enzyme phenylalanine hydroxylase (PAH) leads to elevated systemic phenylalanine (Phe), which can result in severe neurological impairment. As a treatment for PKU, Escherichia coli Nissle (EcN) strain SYNB1618 was developed under Synlogic's Synthetic Biotic™ platform to degrade Phe from within the gastrointestinal (GI) tract. This clinical-stage engineered strain expresses the Phe-metabolizing enzyme phenylalanine ammonia lyase (PAL), catalyzing the deamination of Phe to the non-toxic product trans-cinnamate (TCA). In the present work, we generate a more potent EcN-based PKU strain through optimization of whole cell PAL activity, using biosensor-based high-throughput screening of mutant PAL libraries. A lead enzyme candidate from this screen is used in the construction of SYNB1934, a chromosomally integrated strain containing the additional Phe-metabolizing and biosafety features found in SYNB1618. Head-to-head, SYNB1934 demonstrates an approximate two-fold increase in in vivo PAL activity compared to SYNB1618.


Subject(s)
Biological Therapy , Escherichia coli Proteins/genetics , Escherichia coli/enzymology , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine/metabolism , Phenylketonurias/metabolism , Phenylketonurias/therapy , Biosensing Techniques , Cinnamates , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Humans , Phenylalanine Ammonia-Lyase/metabolism , Protein Engineering
16.
Nat Commun ; 12(1): 3384, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099674

ABSTRACT

Despite recent success in computational design of structured cyclic peptides, de novo design of cyclic peptides that bind to any protein functional site remains difficult. To address this challenge, we develop a computational "anchor extension" methodology for targeting protein interfaces by extending a peptide chain around a non-canonical amino acid residue anchor. To test our approach using a well characterized model system, we design cyclic peptides that inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared to the original anchor (IC50 values of 9.1 and 4.4 nM for the best binders compared to 5.4 and 0.6 µM for the anchor, respectively). The HDAC6 inhibitor is among the most potent reported so far. These results highlight the potential for de novo design of high-affinity protein-peptide interfaces, as well as the challenges that remain.


Subject(s)
Drug Design , Histone Deacetylase Inhibitors/pharmacology , Peptides, Cyclic/pharmacology , Structure-Activity Relationship , Catalytic Domain/drug effects , Crystallography, X-Ray , Enzyme Assays , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 2/isolation & purification , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/ultrastructure , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase 6/genetics , Histone Deacetylase 6/isolation & purification , Histone Deacetylase 6/ultrastructure , Histone Deacetylase Inhibitors/chemistry , Inhibitory Concentration 50 , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Peptide Library , Peptides, Cyclic/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Zebrafish Proteins/genetics , Zebrafish Proteins/ultrastructure
17.
Nat Biotechnol ; 37(10): 1209-1216, 2019 10.
Article in English | MEDLINE | ID: mdl-31501561

ABSTRACT

Chemical and optogenetic methods for post-translationally controlling protein function have enabled modulation and engineering of cellular functions. However, most of these methods only confer single-input, single-output control. To increase the diversity of post-translational behaviors that can be programmed, we built a system based on a single protein receiver that can integrate multiple drug inputs, including approved therapeutics. Our system translates drug inputs into diverse outputs using a suite of engineered reader proteins to provide variable dimerization states of the receiver protein. We show that our single receiver protein architecture can be used to program a variety of cellular responses, including graded and proportional dual-output control of transcription and mammalian cell signaling. We apply our tools to titrate the competing activities of the Rac and Rho GTPases to control cell morphology. Our versatile tool set will enable researchers to post-translationally program mammalian cellular processes and to engineer cell therapies.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Animals , Cell Line , Combinatorial Chemistry Techniques , Drug Design , HeLa Cells , Humans , Mice , Models, Molecular , NIH 3T3 Cells , Optogenetics/methods , Protein Conformation , Protein Multimerization , Protein Processing, Post-Translational , Signal Transduction , Synthetic Biology/methods
18.
Sci China Life Sci ; 62(7): 873-882, 2019 07.
Article in English | MEDLINE | ID: mdl-31119558

ABSTRACT

Functional manipulation of biosynthetic enzymes such as cytochrome P450s (or P450s) has attracted great interest in metabolic engineering of plant natural products. Cucurbitacins and mogrosides are plant triterpenoids that share the same backbone but display contrasting bioactivities. This structural and functional diversity of the two metabolites can be manipulated by engineering P450s. However, the functional redesign of P450s through directed evolution (DE) or structure-guided protein engineering is time consuming and challenging, often because of a lack of high-throughput screening methods and crystal structures of P450s. In this study, we used an integrated approach combining computational protein design, evolutionary information, and experimental data-driven optimization to alter the substrate specificity of a multifunctional P450 (CYP87D20) from cucumber. After three rounds of iterative design and evaluation of 96 protein variants, CYP87D20, which is involved in the cucurbitacin C biosynthetic pathway, was successfully transformed into a P450 mono-oxygenase that performs a single specific hydroxylation at C11 of cucurbitadienol. This integrated P450-engineering approach can be further applied to create a de novo pathway to produce mogrol, the precursor of the natural sweetener mogroside, or to alter the structural diversity of plant triterpenoids by functionally manipulating other P450s.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Amino Acids/chemistry , Amino Acids/metabolism , Biosynthetic Pathways , Cucumis sativus/genetics , Metabolic Engineering , Molecular Docking Simulation , Mutation , Protein Conformation , Substrate Specificity , Triterpenes/chemistry , Triterpenes/metabolism , Yeasts/genetics , Yeasts/metabolism
19.
Eng Life Sci ; 19(7): 490-501, 2019 Jul.
Article in English | MEDLINE | ID: mdl-32625026

ABSTRACT

Single-chain variable fragments (scFv) are widely used in several fields. However, they can be challenging to purify unless using expensive Protein L-based affinity adsorbents or affinity tags. In this work, a purification process for a scFv using mixed-mode (MM) chromatography was developed by design of experiments (DoE) and proteomics for host cell protein (HCP) quantification. Capture of scFv from human embryonic kidney 293 (HEK293) cell feedstocks was performed by hydrophobic charge induction chromatography (MEP HyperCel™), whereafter polishing was performed by anion hydrophobic MM chromatography (Capto Adhere™). The DoE designs of the polishing step included both binding and flow-through modes, the latter being the standard mode for HCP removal. Chromatography with Capto Adhere™ in binding-mode with elution by linear salt gradient at pH 7.5 resulted in optimal yield, purity and HCP reduction factor of 98.9 > 98.5%, and 14, respectively. Totally, 258 different HCPs were removed, corresponding to 84% of identified HCPs. The optimized conditions enabled binding of the scFv to Capto Adhere™ below its theoretical pI, while the majority of HCPs were in the flow-through. Surface property maps indicated the presence of hydrophobic patches in close proximity to negatively charged patches that could potentially play a role in this unique selectivity.

20.
Protein Eng Des Sel ; 31(10): 375-387, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30566669

ABSTRACT

Attempts to create novel ligand-binding proteins often focus on formation of a binding pocket with shape complementarity against the desired ligand (particularly for compounds that lack distinct polar moieties). Although designed proteins often exhibit binding of the desired ligand, in some cases they display unintended recognition behavior. One such designed protein, that was originally intended to bind tetrahydrocannabinol (THC), was found instead to display binding of 25-hydroxy-cholecalciferol (25-D3) and was subjected to biochemical characterization, further selections for enhanced 25-D3 binding affinity and crystallographic analyses. The deviation in specificity is due in part to unexpected altertion of its conformation, corresponding to a significant change of the orientation of an α-helix and an equally large movement of a loop, both of which flank the designed ligand-binding pocket. Those changes led to engineered protein constructs that exhibit significantly more contacts and complementarity towards the 25-D3 ligand than the initial designed protein had been predicted to form towards its intended THC ligand. Molecular dynamics simulations imply that the initial computationally designed mutations may contribute to the movement of the helix. These analyses collectively indicate that accurate prediction and control of backbone dynamics conformation, through a combination of improved conformational sampling and/or de novo structure design, represents a key area of further development for the design and optimization of engineered ligand-binding proteins.


Subject(s)
Protein Engineering , Proteins/genetics , Proteins/metabolism , Amino Acid Sequence , Calcifediol/metabolism , Crystallography, X-Ray , Ligands , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Secondary , Proteins/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL