Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Agric For Meteorol ; 323: 109034, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36003366

ABSTRACT

Considerable amounts of starch granules can be present in the atmosphere from both natural and anthropogenic sources. The aim of this study is to investigate the variability and potential origin of starch granules in ambient air recorded at six cities situated in a region with dominantly agricultural land use. This is achieved by using a combination of laser spectroscopy bioaerosol measurements with 1 min temporal resolution, traditional volumetric Hirst type bioaerosol sampling and atmospheric modelling. The analysis of wind roses identified potential sources of airborne starch (i.e., cereal grain storage facilities) in the vicinity of all aerobiological stations analysed in this study. The analysis of the CALPUFF dispersion model confirmed that emission of dust from the location of storage towers situated about 2.5 km north of the aerobiological station in Novi Sad is a plausible source of high airborne concentrations of starch granules. This study is important for environmental health since it contributes body of knowledge about sources, emission, and dispersion of airborne starch, known to be involved in phenomena such as thunderstorm-triggered asthma. The presented approach integrates monitoring and modelling, and provides a roadmap for examining a variety of bioaerosols previously considered to be outside the scope of traditional aerobiological measurements.

2.
Med Mycol ; 57(4): 403-411, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30212862

ABSTRACT

The concentration of fungal spores in the air is traditionally considered as a proxy of allergen exposure. However, in vitro experiments have shown that the allergenicity of Alternaria spores varies depending on ecophysiological and developmental factors. Despite the potential clinical significance of these findings, it has never been verified in outdoor environments. This study, therefore, aims to investigate variability in the amount of the major allergen (Alt a 1) released from Alternaria spores in outdoor air. During the 3-year monitoring study (2014-2016), the median seasonal allergenicity of Alternaria spores exceeded 8.6 × 10-3 pg Alt a 1/spore. The most allergenic spores were collected during the driest and the most polluted season (with respect to seasonal concentrations of ozone, sulphur dioxide, and particulate matter). Within the season, daily spore allergenicity ranged from 2.4 to 34.7 × 10-3 pg Alt a 1/spore (5th-95th percentile). No repeatable effects of weather and pollution on short-term variations in Alternaria spore allergenicity were found. However, during the episodes when high-potency spores were recorded, the air masses arrived from eastern directions. Contrary, the spores with the lowest allergenicity were related to western winds. This suggests that factors such as source area (habitat types) and species diversity could be responsible for the varying exposure to Alternaria allergens. Our findings show that high and low-potency spores are recorded in the air; therefore, the airborne concentrations of fungal spores alone may not be sufficient to provide allergy sufferers and healthcare professionals with information about allergen exposure.


Subject(s)
Air Microbiology , Allergens/analysis , Alternaria/chemistry , Spores, Fungal/chemistry , Seasons
3.
Postepy Dermatol Alergol ; 35(1): 83-89, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29599676

ABSTRACT

INTRODUCTION: The role of long-distance transported (LDT) Ambrosia pollen in inducing new sensitization and affecting sensitization rates in Artemisia-sensitized patients is unclear. AIM: The aim of this study was to estimate the degree of cross-sensitization to Ambrosia/Artemisia allergens in citizens of Poznan (Western Poland). This area is covered by extensive Artemisia populations but does not currently have local Ambrosia populations. MATERIAL AND METHODS: Sera of 119 patients were tested by fluoroenzyme immunoassay (CAP-FEIA system) against pollen allergen extracts of Artemisia vulgaris and Ambrosia artemisiifolia, an allergenic component of A. vulgaris (nArt v 1), and an allergenic component of A. artemisiifolia (nAmb a 1). Skin prick tests (SPTs, n = 86) were performed with pollen allergen extracts of A. vulgaris and A. artemisiifolia. Artemisia and Ambrosia pollen in ambient air was collected (1996-2013) by a Hirst type volumetric trap sited at roof level (33 m). RESULTS: The SPT showed that the prevalence of sensitization to Ambrosia and Artemisia pollen exceeded 3.5%, and 10.5%, respectively. The measurements of IgE in blood serum (CAP-FEIA) revealed that among Ambrosia-sensitized patients 90.1% (20/22 patients) were concomitantly sensitized to Artemisia. 59.1% (13/22) of these patients reacted to nArt v 1, suggesting primary sensitization to Artemisia pollen. Only 2 (9.1%) patients were mono-sensitized to Ambrosia pollen extract, but surprisingly not to nAmb a 1. CONCLUSIONS: The LDT Ambrosia pollen had a negligible effect on the rate of sensitization to Ambrosia allergens in Poznan and did not increase the prevalence of sensitization to Artemisia pollen in this region. However, the majority of patients showing hypersensitization to Artemisia pollen might also present symptoms during elevated episodes of LDT of Ambrosia pollen.

4.
Ecology ; 98(10): 2615-2625, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28722149

ABSTRACT

Masting, the highly variable production of synchronized large seed crops, is a common reproductive strategy in plant populations. In wind-pollinated trees, flowering and pollination dynamics are hypothesized to provide the mechanistic link for the well-known relationship between weather and population-level seed production. Several hypotheses make predictions about the effect of weather on annual pollination success. The pollen coupling hypothesis predicts that weather and plant resources drive the flowering effort of trees, which directly translates into the size of seed crops through efficient pollination. In contrast, the pollination Moran effect hypothesis predicts that weather affects pollination efficiency, leading to occasional bumper crops. Furthermore, the recently formulated phenology synchrony hypothesis predicts that Moran effects can arise because of weather effects on flowering synchrony, which, in turn, drives pollination efficiency. We investigated the relationship between weather, airborne pollen, and seed production in common European trees, two oak species (Quercus petraea and Q. robur) and beech (Fagus sylvatica) with a 19-yr data set from three sites in Poland. Our results show that warm summers preceding flowering correlated with high pollen abundance and warm springs resulted in short pollen seasons (i.e., high flowering synchrony) for all three species. Pollen abundance was the best predictor for seed crops in beech, as predicted under pollen coupling. In oaks, short pollen seasons, rather than pollen abundance, correlated with large seed crops, providing support for the pollination Moran effect and phenology synchrony hypotheses. Fundamentally different mechanisms may therefore drive masting in species of the family Fagacae.


Subject(s)
Pollination , Trees/physiology , Wind , Poland , Pollen , Reproduction , Seeds , Weather
5.
Int J Biometeorol ; 60(12): 1829-1839, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27121466

ABSTRACT

The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.


Subject(s)
Air Pollutants/analysis , Antigens, Plant/analysis , Plant Extracts/analysis , Air Movements , Environmental Monitoring , Europe , Models, Theoretical
6.
J Allergy Clin Immunol ; 136(1): 87-95.e6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25956508

ABSTRACT

BACKGROUND: Allergies to grass pollen are the number one cause of outdoor hay fever. The human immune system reacts with symptoms to allergen from pollen. OBJECTIVE: We investigated the natural variability in release of the major group 5 allergen from grass pollen across Europe. METHODS: Airborne pollen and allergens were simultaneously collected daily with a volumetric spore trap and a high-volume cascade impactor at 10 sites across Europe for 3 consecutive years. Group 5 allergen levels were determined with a Phl p 5-specific ELISA in 2 fractions of ambient air: particulate matter of greater than 10 µm in diameter and particulate matter greater than 2.5 µm and less than 10 µm in diameter. Mediator release by ambient air was determined in FcεRI-humanized basophils. The origin of pollen was modeled and condensed to pollen potency maps. RESULTS: On average, grass pollen released 2.3 pg of Phl p 5 per pollen. Allergen release per pollen (potency) varied substantially, ranging from less than 1 to 9 pg of Phl p 5 per pollen (5% to 95% percentile). The main variation was locally day to day. Average potency maps across Europe varied between years. Mediator release from basophilic granulocytes correlated better with allergen levels per cubic meter (r(2) = 0.80, P < .001) than with pollen grains per cubic meter (r(2) = 0.61, P < .001). In addition, pollen released different amounts of allergen in the non-pollen-bearing fraction of ambient air, depending on humidity. CONCLUSION: Across Europe, the same amount of pollen released substantially different amounts of group 5 grass pollen allergen. This variation in allergen release is in addition to variations in pollen counts. Molecular aerobiology (ie, determining allergen in ambient air) might be a valuable addition to pollen counting.


Subject(s)
Air/analysis , Basophils/physiology , Particulate Matter/analysis , Plant Proteins/analysis , Pollen/chemistry , Receptors, IgE/metabolism , Rhinitis, Allergic, Seasonal/immunology , Cell Degranulation , Europe , Humans , Humidity , Poaceae/immunology , Receptors, IgE/genetics , Rhinitis, Allergic, Seasonal/epidemiology , Seasons
7.
Aerobiologia (Bologna) ; 32: 265-276, 2016.
Article in English | MEDLINE | ID: mdl-27340330

ABSTRACT

Artemisia pollen is an important allergen in Europe. In Poznan (Western Poland), three Artemisia species, A. vulgaris, A. campestris and A. absinthium, are widely distributed. However, the contributions of these species to the total airborne pollen are unknown. The aim of the study was to determine the flowering phenology and pollen production of the three abovementioned species and to construct a model of potential Artemisia pollen emission in the study area. Phenological observations were conducted in 2012 at six sites in Poznan using a BBCH phenological scale. Pollen production was estimated by counting the pollen grains per flower and recalculating the totals per inflorescence, plant and population in the study area. Airborne pollen concentrations were obtained using a Hirst-type volumetric trap located in the study area. Artemisia vulgaris began to flower the earliest, followed by A. absinthium and then A. campestris. The flowering of A. vulgaris corresponded to the first peak in the airborne pollen level, and the flowering of A. campestris coincided with the second pollen peak. The highest amounts of pollen per single plant were produced by A. vulgaris and A. absinthium. A. campestris produced considerably less pollen, however, due to its common occurrence, it contributed markedly (30 %) to the summation of total of recorded pollen. A. vulgaris is the most important pollen source in Poznan, but the roles of two other Artemisia species cannot be ignored. In particular, A. campestris should be considered as an important pollen contributor and likely might be one of the main causes of allergic reactions during late summer.

8.
Aerobiologia (Bologna) ; 32(3): 453-468, 2016.
Article in English | MEDLINE | ID: mdl-27616811

ABSTRACT

The aim of the study was to create and evaluate models for predicting high levels of daily pollen concentration of Corylus, Alnus, and Betula using a spatiotemporal correlation of pollen count. For each taxon, a high pollen count level was established according to the first allergy symptoms during exposure. The dataset was divided into a training set and a test set, using a stratified random split. For each taxon and city, the model was built using a random forest method. Corylus models performed poorly. However, the study revealed the possibility of predicting with substantial accuracy the occurrence of days with high pollen concentrations of Alnus and Betula using past pollen count data from monitoring sites. These results can be used for building (1) simpler models, which require data only from aerobiological monitoring sites, and (2) combined meteorological and aerobiological models for predicting high levels of pollen concentration.

9.
Int J Biometeorol ; 58(8): 1759-68, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24402307

ABSTRACT

A significant increase in summer temperatures has been observed for the period 1996-2011 in Poznan, Poland. The phenological response of four weed taxa, widely represented by anemophilous species (Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznan by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann-Kendall test and Sen's slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman's rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July-September daily minimum temperatures (r = -0.644, p < 0.01). In contrast, no significant correlations were found between temperature and characteristics of Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznan, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.


Subject(s)
Air Pollutants/analysis , Allergens/analysis , Climate Change , Plant Weeds , Pollen , Artemisia , Environmental Monitoring/statistics & numerical data , Poaceae , Poland , Rumex , Seasons , Temperature , Urticaceae
10.
Aerobiologia (Bologna) ; 30: 149-159, 2014.
Article in English | MEDLINE | ID: mdl-24817783

ABSTRACT

The aim of this study is to supply detailed information about oak (Quercus sp.) pollen seasons in Poznan, Poland, based on a 16-year aerobiological data series (1996-2011). The pollen data were collected using a volumetric spore trap of the Hirst design located in Poznan city center. The limits of the pollen seasons were calculated using the 95 % method. The influence of meteorological parameters on temporal variations in airborne pollen was examined using correlation analysis. Start and end dates of oak pollen seasons in Poznan varied markedly from year-to-year (14 and 17 days, respectively). Most of the pollen grains (around 75 % of the seasonal pollen index) were recorded within the first 2 weeks of the pollen season. The tenfold variation was observed between the least and the most intensive pollen seasons. These fluctuations were significantly related to the variation in the sum of rain during the period second fortnight of March to first fortnight of April the year before pollination (r = 0.799; p < 0.001). During the analyzing period, a significant advance in oak pollen season start dates was observed (-0.55 day/year; p = 0.021), which was linked with an increase in the mean temperature during the second half of March and first half of April (+0.2 °C; p = 0.014). Daily average oak pollen counts correlated positively with mean and maximum daily temperatures, and negatively with daily rainfall and daily mean relative humidity.

11.
Int J Biometeorol ; 57(1): 125-36, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22434484

ABSTRACT

An evaluation of performance of the System for Integrated modeLling of Atmospheric coMposition (SILAM) in application to birch pollen dispersion is presented. The system is described in a companion paper whereas the current study evaluates the model sensitivity to details of the pollen emission module parameterisation and to the meteorological input data. The most important parameters are highlighted. The reference year considered for the analysis is 2006. It is shown that the model is capable of predicting about two-thirds of allergenic alerts, with the odds ratio exceeding 12 for the best setup. Several other statistics corroborate with these estimations. Low-pollen concentration days are also predicted correctly in more than two-thirds of cases. The model experiences certain difficulties only with intermediate pollen concentrations. It is demonstrated that the most important input parameter is the near-surface temperature, the bias of which can easily jeopardise the results. The model sensitivity to random fluctuations of temperature is much lower. Other parameters important at various stages of pollen development, release, and dispersion are precipitation and ambient humidity, as well as wind direction.


Subject(s)
Betula , Models, Theoretical , Pollen , Atmosphere , Europe , Flowers , Weather
12.
Sci Total Environ ; 861: 160180, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36403848

ABSTRACT

Although Alternaria spores are well-known allergenic fungal spores, automatic bioaerosol recognition systems have not been trained to recognize these particles until now. Here we report the development of a new algorithm able to classify Alternaria spores with BAA500 automatic bioaerosol monitors. The best validation score was obtained when the model was trained on both data from the original dataset and artificially generated images, with a validation unweighted mean Intersection over Union (IoU), also called Jaccard Index, of 0.95. Data augmentation techniques were applied to the training set. While some particles were not recognized (false negatives), false positives were few. The results correlated well with manual counts (mean of four Hirst-type traps), with R2 = 0.78. Counts from BAA500 were 1.92 times lower than with Hirst-type traps. The algorithm was then used to re-analyze the historical automatic pollen monitoring network (ePIN) dataset (2018-2022), which lacked Alternaria spore counts. Re-analysis of past data showed that Alternaria spore exposure in Bavaria was very variable, with the highest counts in the North (Marktheidenfeld, 154 m a.s.l.), and the lowest values close to the mountains in the South (Garmisch-Partenkirchen, 735 m a.s.l.). This approach shows that in our network future algorithms can be run on past datasets. Over time, the use of different algorithms could lead to misinterpretations as stemming from climate change or other phenological causes. Our approach enables consistent, homogeneous treatment of long-term series, thus preventing variability in particle counts owing to changes in the algorithms.


Subject(s)
Alternaria , Artificial Intelligence , Spores, Fungal , Pollen , Allergens , Algorithms
13.
Sci Total Environ ; 905: 167042, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37709071

ABSTRACT

Aeroallergens or inhalant allergens, are proteins dispersed through the air and have the potential to induce allergic conditions such as rhinitis, conjunctivitis, and asthma. Outdoor aeroallergens are found predominantly in pollen grains and fungal spores, which are allergen carriers. Aeroallergens from pollen and fungi have seasonal emission patterns that correlate with plant pollination and fungal sporulation and are strongly associated with atmospheric weather conditions. They are released when allergen carriers come in contact with the respiratory system, e.g. the nasal mucosa. In addition, due to the rupture of allergen carriers, airborne allergen molecules may be released directly into the air in the form of micronic and submicronic particles (cytoplasmic debris, cell wall fragments, droplets etc.) or adhered onto other airborne particulate matter. Therefore, aeroallergen detection strategies must consider, in addition to the allergen carriers, the allergen molecules themselves. This review article aims to present the current knowledge on inhalant allergens in the outdoor environment, their structure, localization, and factors affecting their production, transformation, release or degradation. In addition, methods for collecting and quantifying aeroallergens are listed and thoroughly discussed. Finally, the knowledge gaps, challenges and implications associated with aeroallergen analysis are described.


Subject(s)
Air Pollutants , Asthma , Allergens/analysis , Pollen/chemistry , Particulate Matter/analysis , Europe , Air Pollutants/analysis
14.
Sci Total Environ ; 866: 161220, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36584954

ABSTRACT

To benefit allergy patients and the medical practitioners, pollen information should be available in both a reliable and timely manner; the latter is only recently possible due to automatic monitoring. To evaluate the performance of all currently available automatic instruments, an international intercomparison campaign was jointly organised by the EUMETNET AutoPollen Programme and the ADOPT COST Action in Munich, Germany (March-July 2021). The automatic systems (hardware plus identification algorithms) were compared with manual Hirst-type traps. Measurements were aggregated into 3-hourly or daily values to allow comparison across all devices. We report results for total pollen as well as for Betula, Fraxinus, Poaceae, and Quercus, for all instruments that provided these data. The results for daily averages compared better with Hirst observations than the 3-hourly values. For total pollen, there was a considerable spread among systems, with some reaching R2 > 0.6 (3 h) and R2 > 0.75 (daily) compared with Hirst-type traps, whilst other systems were not suitable to sample total pollen efficiently (R2 < 0.3). For individual pollen types, results similar to the Hirst were frequently shown by a small group of systems. For Betula, almost all systems performed well (R2 > 0.75 for 9 systems for 3-hourly data). Results for Fraxinus and Quercus were not as good for most systems, while for Poaceae (with some exceptions), the performance was weakest. For all pollen types and for most measurement systems, false positive classifications were observed outside of the main pollen season. Different algorithms applied to the same device also showed different results, highlighting the importance of this aspect of the measurement system. Overall, given the 30 % error on daily concentrations that is currently accepted for Hirst-type traps, several automatic systems are currently capable of being used operationally to provide real-time observations at high temporal resolutions. They provide distinct advantages compared to the manual Hirst-type measurements.


Subject(s)
Allergens , Hypersensitivity , Humans , Environmental Monitoring/methods , Pollen , Seasons , Poaceae , Betula
15.
Sci Total Environ ; 905: 167095, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37748607

ABSTRACT

Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.


Subject(s)
Allergens , Ambrosia , Humans , Europe , Pollen
16.
Sci Total Environ ; 826: 154231, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35240189

ABSTRACT

This is the first time that atmospheric concentrations of individual pollen types have been recorded by an automatic sampler with 1-hour and sub-hourly resolution (i.e. 1-minute and 1-second data). The data were collected by traditional Hirst type methods and state-of the art Rapid-E real-time bioaerosol detector. Airborne pollen data from 7 taxa, i.e. Acer negundo, Ambrosia, Broussonetia papyrifera, Cupressales (Taxaceae and Cupressaceae families), Platanus, Salix and Ulmus, were collected during the 2019 pollen season in Novi Sad, Serbia. Pollen data with daily, hourly and sub-hourly temporal resolution were analysed in terms of their temporal variability. The impact of turbulence kinetic energy (TKE) on pollen cloud homogeneity was investigated. Variations in Seasonal Pollen Integrals produced by Hirst and Rapid-E show that scaling factors are required to make data comparable. Daily average and hourly measurements recorded by the Rapid-E and Hirst were highly correlated and so examining Rapid-E measurements with sub-hourly resolution is assumed meaningful from the perspective of identification accuracy. Sub-hourly data provided an insight into the heterogenous nature of pollen in the air, with distinct peaks lasting ~5-10 min, and mostly single pollen grains recorded per second. Short term variations in 1-minute pollen concentrations could not be wholly explained by TKE. The new generation of automatic devices has the potential to increase our understanding of the distribution of bioaerosols in the air, provide insights into biological processes such as pollen release and dispersal mechanisms, and have the potential for us to conduct investigations into dose-response relationships and personal exposure to aeroallergens.


Subject(s)
Air Pollutants , Pollen , Air Pollutants/analysis , Allergens/analysis , Ambrosia , Environmental Monitoring , Humans , Pollen/chemistry , Seasons
17.
Sci Total Environ ; 819: 153148, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35041944

ABSTRACT

Alternaria spores are pathogenic to agricultural crops, and the longest and the most severe sporulation seasons are predominantly recorded in rural areas, e.g. the Pannonian Plain (PP) in South-Central Europe. In Poland (Central Europe), airborne Alternaria spore concentrations peak between July and August. In this study, we test the hypothesis that the PP is the source of Alternaria spores recorded in Poland after the main sporulation season (September-October). Airborne Alternaria spores (2005-2019) were collected using volumetric Hirst spore traps located in 38 locations along the potential pathways of air masses, i.e. from Serbia, Romania and Hungary, through the Czech Republic, Slovakia and Ukraine, to Northern Poland. Three potential episodes of Long Distance Transport (LDT) were selected and characterized in detail, including the analysis of Alternaria spore data, back trajectory analysis, dispersal modelling, and description of local weather and mesoscale synoptic conditions. During selected episodes, increases in Alternaria spore concentrations in Poznan were recorded at unusual times that deviated from the typical diurnal pattern, i.e. at night or during morning hours. Alternaria spore concentrations on the PP were very high (>1000 spores/m3) at that time. The presence of non-local Ambrosia pollen, common to the PP, were also observed in the air. Air mass trajectory analysis and dispersal modelling showed that the northwest part of the PP, north of the Transdanubian Mountains, was the potential source area of Alternaria spores. Our results show that Alternaria spores are transported over long distances from the PP to Poland. These spores may markedly increase local exposure to Alternaria spores in the receptor area and pose a risk to both human and plant health. Alternaria spores followed the same atmospheric route as previously described LDT ragweed pollen, revealing the existence of an atmospheric super highway that transports bioaerosols from the south to the north of Europe.


Subject(s)
Allergens , Alternaria , Air Microbiology , Allergens/analysis , Humans , Poland , Seasons , Serbia , Spores, Fungal
18.
Int J Biometeorol ; 55(4): 633-44, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21057819

ABSTRACT

Previous studies have shown that ragweed pollen arrives in Poland from sources in the south, in Slovakia, the Czech Republic, Hungary and Austria. It is likely that ragweed pollen also arrives from sources in the southeast (e.g. Ukraine). This hypothesis was investigated using 13 years of pollen data and back-trajectory analysis. Ambrosia pollen data were collected at three sites in Poland, Rzeszów, Kraków and Poznan. The amount of ragweed pollen recorded at Rzeszów was significantly higher than in Poznan and Kraków. This can be related to either a higher abundance of local populations of Ambrosia in south-east Poland or the proximity of Rzeszów to foreign sources of ragweed pollen. The combined results of pollen measurements and air mass trajectory calculations identified plumes of Ambrosia pollen that were recorded at Rzeszów, Kraków and Poznan on 4 and 5 September 1999 and 3 September 2002. These plumes arrived at the pollen-monitoring sites from an easterly direction, indicating sources of Ambrosia pollen in eastern Poland or Ukraine. This identifies Ukraine as a possible new source of ragweed pollen for Poland and therefore an important source area of Ambrosia pollen on the European Continent.


Subject(s)
Allergens/analysis , Ambrosia/adverse effects , Pollen/adverse effects , Air Movements , Allergens/adverse effects , Ambrosia/immunology , Climate , Humans , Meteorological Concepts , Poland , Pollen/immunology , Respiratory Hypersensitivity/etiology , Seasons , Ukraine
19.
Fungal Biol ; 124(3-4): 219-227, 2020.
Article in English | MEDLINE | ID: mdl-32220382

ABSTRACT

Fungal fragments are abundant immunoreactive bioaerosols that may outnumber the concentrations of intact spores in the air. To investigate the importance of Alternaria fragments as sources of allergens compared to Alternaria spores, we determined the levels of Alternaria spores and Alt a 1 (the major allergen in Alternaria alternata spores) collected on filters within three fractions of particulate matter (PM) of different aerodynamic diameter: (1) PM>10, (diameter>10 µm); (2) PM2.5-10 (2.5-10µm); (3) PM2.5 (0.12-2.5 µm). The airborne particles were collected using a three stage high-volume ChemVol cascade impactor during the Alternaria sporulation season in Poznan, Poland (30 d between 6 July and 22 September 2016). The quantification of Alt a 1 was performed using the enzyme-linked immunosorbent assay. High concentrations of Alt a 1 were recorded during warm and dry d characterized by high sunshine duration, lack of clouds and high dew point values. Atmospheric concentrations of Alternaria spores correlated significantly (r = 0.930, p < 0.001) with Alt a 1 levels. The highest Alt a 1 was recorded in PM2.5-10 (66.8 % of total Alt a 1), while the lowest in PM2.5 (<1.0 %). Significantly more Alt a 1 per spore (>30 %) was observed in PM2.5-10 than in PM>10. This Alt a 1 excess may be derived from sources other than spores, e.g. hyphal fragments. Overall, in outdoor air the major source of Alt a 1 are intact Alternaria spores, but the impact of other fungal fragments (hyphal parts, broken spores, conidiophores) cannot be neglected, as they may increase the total atmospheric Alt a 1 concentration.


Subject(s)
Alternaria/chemistry , Antigens, Fungal/chemistry , Particle Size , Spores, Fungal/chemistry , Air Microbiology , Air Pollutants , Fungal Proteins/analysis , Hypersensitivity/microbiology , Hyphae/chemistry , Poland , Seasons
20.
Sci Total Environ ; 713: 136611, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31958727

ABSTRACT

Artemisia pollen grains are important aeroallergens worldwide. The amount of allergenic proteins produced by pollen, or pollen allergenicity, is regulated by both genes and the environment. As a result, even closely related plant taxa may release pollen with distinctly different allergen contents. Here, we determined the variability in atmospheric exposure to the major Artemisia pollen allergen, Art v 1, during the pollination seasons of two common species, i.e., A. vulgaris (early flowering species) and A. campestris (late flowering species), in Poznan, Poland (2013-2015). Artemisia pollen grains were collected using Hirst-type volumetric trap, while Art v 1 was collected by a two-stage cascade impactor (PM10 and PM>10 air fractions) and quantified by immunoenzymatic analysis. The results showed that daily Art v 1 levels correlated significantly with mean daily concentrations of Artemisia pollen (from r = 0.426 to r = 0.949, depending on air fraction and peak of the season). Significant differences were observed between 1) the median pollen allergenicity in different seasons (from 2.5 to 4.7 pg Art v 1/pollen) and 2) the median pollen allergenicity in different peak periods of the season (from 1.8 to 6.7 pg Art v 1/pollen). During the late peak (flowering of A. campestris), the median pollen allergenicity was significantly higher (on average by 63%, p < 0.05) than that during A. vulgaris flowering. The highest mean seasonal pollen allergenicity was observed during the wettest season, while the lowest was observed during the driest season (from July-August). In summary, our study showed distinct differences in Artemisia pollen allergenicity, that were not only related to daily and seasonal variability, which may exceed 800% and 80%, respectively but also noticeable when two common Artemisia species were compared. Therefore, we argue that variability in pollen allergenicity (both seasonal and species-specific) should be considered in future studies assessing pollen exposure.


Subject(s)
Artemisia , Allergens , Poland , Pollen , Weather
SELECTION OF CITATIONS
SEARCH DETAIL