ABSTRACT
Parvalbumin-expressing interneurons (PVs) in the dentate gyrus provide activity-dependent regulation of adult neurogenesis as well as maintain inhibitory control of mature neurons. In mature neurons, PVs evoke GABAA postsynaptic currents (GPSCs) with fast rise and decay phases that allow precise control of spike timing, yet synaptic currents with fast kinetics do not appear in adult-born neurons until several weeks after cell birth. Here we used mouse hippocampal slices to address how PVs signal to newborn neurons prior to the appearance of fast GPSCs. Whereas PV-evoked currents in mature neurons exhibit hallmark fast rise and decay phases, newborn neurons display slow GPSCs with characteristics of spillover signaling. We also unmasked slow spillover currents in mature neurons in the absence of fast GPSCs. Our results suggest that PVs mediate slow spillover signaling in addition to conventional fast synaptic signaling, and that spillover transmission mediates activity-dependent regulation of early events in adult neurogenesis.
Subject(s)
Dentate Gyrus/physiology , Interneurons/metabolism , Neural Inhibition/physiology , Parvalbumins/metabolism , Animals , Dentate Gyrus/growth & development , Mice , Mice, Transgenic , Neurogenesis , Signal Transduction/physiologyABSTRACT
Several studies have demonstrated that mouse models of Alzheimer's disease (AD) can exhibit impaired peripheral glucose tolerance. Further, in the APP/PS1 mouse model, this is observed prior to the appearance of AD-related neuropathology (e.g., amyloid-ß plaques; Aß) or cognitive impairment. In the current study, we examined whether impaired glucose tolerance also preceded AD-like changes in the triple transgenic model of AD (3xTg-AD). Glucose tolerance testing (GTT), insulin ELISAs, and insulin tolerance testing (ITT) were performed at ages prior to (1-3 months and 6-8 months old) and post-pathology (16-18 months old). Additionally, we examined for altered insulin signaling in the hippocampus. Western blots were used to evaluate the two-primary insulin signaling pathways: PI3K/AKT and MAPK/ERK. Since the PI3K/AKT pathway affects several downstream targets associated with metabolism (e.g., GSK3, glucose transporters), western blots were used to examine possible alterations in the expression, translocation, or activation of these targets. We found that 3xTg-AD mice display impaired glucose tolerance as early as 1 month of age, concomitant with a decrease in plasma insulin levels well prior to the detection of plaques (â¼14 months old), aggregates of hyperphosphorylated tau (â¼18 months old), and cognitive decline (≥18 months old). These alterations in peripheral metabolism were seen at all time points examined. In comparison, PI3K/AKT, but not MAPK/ERK, signaling was altered in the hippocampus only in 18-20-month-old 3xTg-AD mice, a time point at which there was a reduction in GLUT3 translocation to the plasma membrane. Taken together, our results provide further evidence that disruptions in energy metabolism may represent a foundational step in the development of AD.
Subject(s)
Alzheimer Disease/metabolism , Glucose Intolerance/metabolism , Glucose Transporter Type 3/metabolism , Hippocampus/metabolism , Insulin/blood , Proto-Oncogene Proteins c-akt/metabolism , Aging/metabolism , Aging/pathology , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Disease Progression , Glucose Intolerance/pathology , Glucose Intolerance/psychology , Glucose Transporter Type 4/metabolism , Hippocampus/pathology , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Pancreas/metabolism , Pancreas/pathology , Phosphorylation , Plasma/metabolismABSTRACT
Epidemiological data have shown that metabolic disease can increase the propensity for developing cognitive decline and dementia, particularly Alzheimer's disease (AD). While this interaction is not completely understood, clinical studies suggest that both hyper- and hypoinsulinemia are associated with an increased risk for developing AD. Indeed, insulin signaling is altered in post-mortem brain tissue from AD patients and treatments known to enhance insulin signaling can improve cognitive function. Further, clinical evidence has shown that AD patients and mouse models of AD often display alterations in peripheral metabolism. Since insulin is primarily derived from the periphery, it is likely that changes in peripheral insulin levels lead to alterations in central nervous system (CNS) insulin signaling and could contribute to cognitive decline and pathogenesis. Developing a better understanding of the relationship between alterations in peripheral metabolism and cognitive function might provide a foundation for the development of better treatment options for patients with AD. In this article we will begin to piece together the present data defining this relationship by briefly discussing insulin signaling in the periphery and CNS, its role in cognitive function, insulin's relationship to AD, peripheral metabolic alterations in mouse models of AD and how information from these models helps understand the mechanisms through which these changes potentially lead to impairments in insulin signaling in the CNS, and potential ways to target insulin signaling that could improve cognitive function in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Subject(s)
Alzheimer Disease/metabolism , Receptor, Insulin/metabolism , Animals , Humans , Insulin/metabolismABSTRACT
BACKGROUND: Alzheimer's disease (AD) is a devastating neurodegenerative disorder bearing multiple pathological hallmarks suggestive of complex cellular/molecular interplay during pathogenesis. Transgenic mice and nonhuman primates are used as disease models for mechanistic and translational research into AD; the extent to which these animal models recapitulate AD-type neuropathology is an issue of importance. Putative C-terminal fragments from sortilin, a member of the vacuolar protein sorting 10 protein (Vps10p) family, have recently been shown to deposit in the neuritic ß-amyloid (Aß) plaques in the human brain. METHODS: We set out to explore if extracellular sortilin neuropathology exists in AD-related transgenic mice and nonhuman primates. Brains from different transgenic strains and ages developed overt cerebral Aß deposition, including the ß-amyloid precursor protein and presenilin 1 double-transgenic (APP/PS1) mice at ~ 14 months of age, the five familial Alzheimer's disease mutations transgenic (5×FAD) mice at ~ 8 months, the triple-transgenic Alzheimer's disease (3×Tg-AD) mice at ~ 22 months, and aged monkeys (Macaca mulatta and Macaca fascicularis) were examined. Brain samples from young transgenic mice, middle-aged/aged monkeys, and AD humans were used as negative and positive pathological controls. RESULTS: The C-terminal sortilin antibody, which labeled senile plaques in the AD human cerebral sections, did not display extracellular immunolabeling in the transgenic mouse or aged monkey brain sections with Aß deposition. In Western blot analysis, sortilin fragments ~ 15 kDa were not detectable in transgenic mouse cortical lysates, but they occurred in control AD lysates. CONCLUSIONS: In reference to their human brain counterparts, neuritic plaques seen in transgenic AD model mouse brains represent an incomplete form of this AD pathological hallmark. The species difference in neuritic plaque constituents also indicates more complex secondary proteopathies in the human brain relative to rodents and nonhuman primates during aging and in AD.
Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , Extracellular Fluid/metabolism , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/metabolism , Disease Models, Animal , Gene Expression Regulation/physiology , Humans , Macaca mulatta , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Presenilin-1/genetics , tau Proteins/metabolismABSTRACT
Cognitive function declines with age and appears to correlate with decreased cerebral metabolic rate (CMR). Caloric restriction, an antiaging manipulation that extends life-span and can preserve cognitive function, is associated with decreased glucose uptake, decreased lactate levels, and increased ketone body (KB) levels in the brain. Since the majority of brain nutrients come from the periphery, this study examined whether the capacity to regulate peripheral glucose levels and KB production differs in animals with successful cognitive aging (growth hormone receptor knockouts, GHRKOs) versus unsuccessful cognitive aging (the 3xTg-AD mouse model of Alzheimer's disease). Animals were fasted for 5 hours with their plasma glucose and KB levels subsequently measured. Intriguingly, in GHRKO mice, compared to those in controls, fasting plasma glucose levels were significantly decreased while their KB levels were significantly increased. Conversely, 3xTg-AD mice, compared to controls, exhibited significantly elevated plasma glucose levels and significantly reduced plasma KB levels. Taken together, these results suggest that the capacity to provide the brain with KBs versus glucose throughout an animal's life could somehow help preserve cognitive function with age, potentially through minimizing overall brain exposure to reactive oxygen species and advanced glycation end products and improving mitochondrial function.
ABSTRACT
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by beta-amyloid (Aß) deposition, neurofibrillary tangles and cognitive decline. Clinical data suggests that both type 1 and type 2 diabetes are risk factors for AD-related dementia and several clinical studies have demonstrated that AD patients show alterations in peripheral glucose regulation characterized by insulin resistance (hyperinsulinemia) or hypoinsulinemia. Whether animal models of AD exhibit a pre-diabetic phenotype without additional dietary or experimental manipulation is unclear however, with contradictory data available. Further, most studies have not examined the time course of potential pre-diabetic changes relative to AD pathogenesis and cognitive decline. Thus, in this study we tested the hypothesis that a pre-diabetic phenotype (peripheral metabolic dysregulation) exists in the APP/PS1 transgenic model of AD under normal conditions and precedes AD-related pathology. Specifically, we examined glucose tolerance in male APP/PS1 mice on a C57BL/6J congenic background at 2, 4-6 and 8-9months of age by assessing fasting glucose levels, glucose tolerance, plasma insulin levels and insulin sensitivity as well as the development of pathological characteristics of AD and verified that our APP/PS1 mice develop cognitive impairment. Here we show that APP/PS1 mice, compared to wild-type controls, exhibit a significant impairment in glucose tolerance during an intraperitoneal glucose tolerance test (ipGTT) and a trend for increased fasting plasma insulin concentrations as early as 2months of age, while extracellular Aß1-42 deposition occurs later and cognitive decline exists at 8-9months of age. Moreover, APP/PS1 mice did not respond as well to exogenous insulin as the wild-type controls during an intraperitoneal insulin tolerance test (ipITT). Taken together, these data reveal that male APP/PS1 mice on a C57BL/6J congenic background exhibit a pre-diabetic phenotype prior to the development of AD-like pathology and that this metabolic deficit persists when they exhibit neuropathology and cognitive decline. This raises the question of whether altered glucose regulation and insulin production/secretion could contribute to AD pathogenesis.
Subject(s)
Alzheimer Disease/complications , Cognitive Dysfunction/blood , Hippocampus/pathology , Insulin Resistance , Insulin/blood , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Blood Glucose/analysis , Disease Models, Animal , Glucose Tolerance Test , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/pathology , Presenilin-1/geneticsABSTRACT
Alzheimer's disease (AD) is the primary cause of dementia in the elderly. The cause of the disease is still unknown, but amyloid plaques and neurofibrillary tangles in the brain are thought to play a role. However, transgenic mouse models expressing these neuropathological features do not show severe or consistent cognitive impairments. There is accumulating evidence that diabetes increases the risk for developing AD. We tested the hypothesis that experimentally induced diabetes would exacerbate cognitive symptoms in a mouse model of AD. Diabetes was induced in 12-month old 3xTg mice using streptozotocin (STZ; 90mg/kg, i.p., on two successive days). Hyperglycemia was verified by sampling blood glucose levels. Three months after injection (at 15 months of age), the mice were behaviorally tested in the Morris water maze and contextual fear conditioning. Subsequently, the hippocampal region was examined using immunohistochemistry (6E10 antibody for amyloid) and immunoblotting (AT8 antibody for phosphorylated tau). No differences were found in learning or memory between the vehicle-treated control and STZ-treated groups. A significant increase in the number of amyloid-positive plaques was observed in the subiculum of STZ-treated mice; very few plaques were seen in other hippocampal regions in either group. No differences in AT8 load were observed. These results reinforce that amyloid plaques, per se, are not sufficient to cause memory impairments. Further, while diabetes can enhance this aspect of brain pathology, the combination of disrupted glucose metabolism and the transgenes is still not sufficient to cause the severe cognitive impairments associated with clinical AD.
Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/psychology , Learning , Memory , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Animals , Blotting, Western , Brain/metabolism , Diabetes Mellitus, Experimental/metabolism , Immunohistochemistry , Learning/physiology , Male , Memory/physiology , Mice, Transgenic , Neuropsychological Tests , tau Proteins/metabolismABSTRACT
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by beta-amyloid (Aß) deposition, neurofibrillary tangles and cognitive decline. Recent pharmacologic studies have found that ATP-sensitive potassium (KATP) channels may play a role in AD and could be a potential therapeutic target. Interestingly, these channels are found in both neurons and astrocytes. One of the hallmarks associated with AD is reactive gliosis and a change in astrocytic function has been identified in several neuropathological conditions including AD. Thus the goal of this study was to examine whether the pore-forming subunits of KATP channels, Kir6.1 and Kir6.2, are altered in the hippocampus in a cell type-specific manner of the 3xTg-AD mouse model of AD and in human AD tissue obtained from the Chinese brain bank. Specifically, in old 3xTg-AD mice, and age-matched controls, we examined glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), Kir6.1 and Kir6.2 in hippocampal region CA1 with a combination of immunoblotting and immunohistochemistry (IHC). A time point was selected when memory impairment and histopathological changes have been reported to occur in 3xTg-AD mice. In human AD and age-matched control tissue IHC experiments were performed using GFAP and Kir6.2. In the hippocampus of 3xTg-AD mice, compared to wild-type controls, Western blots showed a significant increase in GFAP indicating astrogliosis. Further, there was an increase in Kir6.2, but not Kir6.1 in the plasma membrane fraction. IHC examination of hippocampal region CA1 in 3xTg-AD sections revealed an increase in Kir6.2 immunoreactivity (IR) in astrocytes as identified by GFAP and GS. In human AD tissue similar data were obtained. There was an increase in GFAP-IR in the stratum oriens (SO) and alveus (ALV) of CA1 concomitant with an increase in Kir6.2-IR in cells with an astrocytic-like morphology. Dual immunofluorescence revealed a dramatic increase in co-localization of Kir6.2-IR and GFAP-IR. Taken together, these data demonstrate that increased Kir6.2 is seen in reactive astrocytes in old 3xTg-AD mice and human AD tissue. These changes could dramatically alter astrocytic function and subsequently contribute to AD phenotype in either a compensatory or pathophysiological manner.