Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Chembiochem ; 25(9): e202400020, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38470946

ABSTRACT

Transcription factors (TFs) play a central role in gene regulation, and their malfunction can result in a plethora of severe diseases. TFs are therefore interesting therapeutic targets, but their involvement in protein-protein interaction networks and the frequent lack of well-defined binding pockets render them challenging targets for classical small molecules. As an alternative, peptide-based scaffolds have proven useful, in particular with an α-helical active conformation. Peptide-based strategies often require extensive structural optimization efforts, which could benefit from a more detailed understanding of the dynamics in inhibitor/protein interactions. In this study, we investigate how truncated stapled α-helical peptides interact with the transcription factor Nuclear Factor-Y (NF-Y). We identified a 13-mer minimal binding core region, for which two crystal structures with an altered C-terminal peptide conformation when bound to NF-Y were obtained. Subsequent molecular dynamics simulations confirmed that the C-terminal part of the stapled peptide is indeed relatively flexible while still showing defined interactions with NF-Y. Our findings highlight the importance of flexibility in the bound state of peptides, which can contribute to overall binding affinity.


Subject(s)
CCAAT-Binding Factor , Molecular Dynamics Simulation , Peptides , Protein Binding , Peptides/chemistry , Peptides/metabolism , CCAAT-Binding Factor/metabolism , CCAAT-Binding Factor/chemistry , Binding Sites , Humans , Crystallography, X-Ray , Amino Acid Sequence
2.
Bioconjug Chem ; 34(6): 1114-1121, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37246906

ABSTRACT

Enzymes are of central importance to many biotechnological and biomedical applications. However, for many potential applications, the required conditions impede enzyme folding and therefore function. The enzyme Sortase A is a transpeptidase that is widely used to perform bioconjugation reactions with peptides and proteins. Thermal and chemical stress impairs Sortase A activity and prevents its application under harsh conditions, thereby limiting the scope for bioconjugation reactions. Here, we report the stabilization of a previously reported, activity-enhanced Sortase A, which suffered from particularly low thermal stability, using the in situ cyclization of proteins (INCYPRO) approach. After introduction of three spatially aligned solvent-exposed cysteines, a triselectrophilic cross-linker was attached. The resulting bicyclic INCYPRO Sortase A demonstrated activity both at elevated temperature and in the presence of chemical denaturants, conditions under which both wild-type Sortase A and the activity-enhanced version are inactive.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism , Peptides , Cysteine Endopeptidases/metabolism
3.
J Pept Sci ; 29(1): e3457, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36239115

ABSTRACT

Protein-protein interactions (PPI) are involved in all cellular processes and many represent attractive therapeutic targets. However, the frequently rather flat and large interaction areas render the identification of small molecular PPI inhibitors very challenging. As an alternative, peptide interaction motifs derived from a PPI interface can serve as starting points for the development of inhibitors. However, certain proteins remain challenging targets when applying inhibitors with a competitive mode of action. For that reason, peptide-based ligands with an irreversible binding mode have gained attention in recent years. This review summarizes examples of covalent inhibitors that employ peptidic binders and have been tested in a biological context.


Subject(s)
Peptides , Peptides/pharmacology
4.
Nucleic Acids Res ; 49(22): 12622-12633, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34871435

ABSTRACT

The design of high-affinity, RNA-binding ligands has proven very challenging. This is due to the unique structural properties of RNA, often characterized by polar surfaces and high flexibility. In addition, the frequent lack of well-defined binding pockets complicates the development of small molecule binders. This has triggered the search for alternative scaffolds of intermediate size. Among these, peptide-derived molecules represent appealing entities as they can mimic structural features also present in RNA-binding proteins. However, the application of peptidic RNA-targeting ligands is hampered by a lack of design principles and their inherently low bio-stability. Here, the structure-based design of constrained α-helical peptides derived from the viral suppressor of RNA silencing, TAV2b, is described. We observe that the introduction of two inter-side chain crosslinks provides peptides with increased α-helicity and protease stability. One of these modified peptides (B3) shows high affinity for double-stranded RNA structures including a palindromic siRNA as well as microRNA-21 and its precursor pre-miR-21. Notably, B3 binding to pre-miR-21 inhibits Dicer processing in a biochemical assay. As a further characteristic this peptide also exhibits cellular entry. Our findings show that constrained peptides can efficiently mimic RNA-binding proteins rendering them potentially useful for the design of bioactive RNA-targeting ligands.


Subject(s)
Peptides/chemistry , RNA Interference , RNA, Double-Stranded/chemistry , RNA-Binding Proteins/chemistry , Viral Proteins/chemistry , Cell Membrane Permeability , Cucumovirus , Endopeptidase K , Humans , K562 Cells , MicroRNAs/chemistry , MicroRNAs/metabolism , Molecular Mimicry , Peptides/metabolism , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA, Double-Stranded/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism
5.
Angew Chem Int Ed Engl ; 62(41): e202308028, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37603459

ABSTRACT

Double-stranded RNAs (dsRNA) possess immense potential for biomedical applications. However, their therapeutic utility is limited by low stability and poor cellular uptake. Different strategies have been explored to enhance the stability of dsRNA, including the incorporation of modified nucleotides, and the use of diverse carrier systems. Nevertheless, these have not resulted in a broadly applicable approach thereby preventing the wide-spread application of dsRNA for therapeutic purposes. Herein, we report the design of dimeric stapled peptides based on the RNA-binding protein TAV2b. These dimers are obtained via disulfide formation and mimic the natural TAV2b assembly. They bind and stabilize dsRNA in the presence of serum, protecting it from degradation. In addition, peptide binding also promotes cellular uptake of dsRNA. Importantly, peptide dimers monomerize under reducing conditions which results in a loss of RNA binding. These findings highlight the potential of peptide-based RNA binders for the stabilization and protection of dsRNA, representing an appealing strategy towards the environment-triggered release of RNA. This can broaden the applicability of dsRNA, such as short interfering RNAs (siRNA), for therapeutic applications.

6.
J Am Chem Soc ; 144(33): 15303-15313, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35945166

ABSTRACT

The use of antibiotics is threatened by the emergence and spread of multidrug-resistant strains of bacteria. Thus, there is a need to develop antibiotics that address new targets. In this respect, the bacterial divisome, a multi-protein complex central to cell division, represents a potentially attractive target. Of particular interest is the FtsQB subcomplex that plays a decisive role in divisome assembly and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of a macrocyclic covalent inhibitor derived from a periplasmic region of FtsB that mediates its binding to FtsQ. The bioactive conformation of this motif was stabilized by a customized cross-link resulting in a tertiary structure mimetic with increased affinity for FtsQ. To increase activity, a covalent handle was incorporated, providing an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer membrane-permeable E. coli strain, concurrent with the expected loss of FtsB localization, and also affected the infection of zebrafish larvae by a clinical E. coli strain. This first-in-class inhibitor of a divisome protein-protein interaction highlights the potential of proteomimetic molecules as inhibitors of challenging targets. In particular, the covalent mode-of-action can serve as an inspiration for future antibiotics that target protein-protein interactions.


Subject(s)
Escherichia coli Proteins , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cell Cycle Proteins/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Membrane Proteins/chemistry , Zebrafish/metabolism
7.
Bioorg Med Chem ; 70: 116920, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35841828

ABSTRACT

The Wnt/ß-catenin signaling pathway is crucially involved in embryonic development, stem cell maintenance and tissue renewal. Hyperactivation of this pathway is associated with the development and progression of various types of cancers. The transcriptional coactivator ß-catenin represents a pivotal component of the pathway and its interaction with transcription factors of the TCF/LEF family is central to pathway activation. Inhibition of this crucial protein-protein interaction via direct targeting of ß-catenin is considered a promising strategy for the inactivation of oncogenic Wnt signaling. This review summarizes advances in the development of Wnt antagonists that have been shown to directly bind ß-catenin.


Subject(s)
TCF Transcription Factors , beta Catenin , Carcinogenesis , Humans , TCF Transcription Factors/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
8.
Chembiochem ; 22(17): 2672-2679, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34060202

ABSTRACT

Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.


Subject(s)
Protein Splicing
9.
Chemistry ; 27(40): 10477-10483, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-33914384

ABSTRACT

Biomolecular assemblies composed of proteins and oligonucleotides play a central role in biological processes. While in nature, oligonucleotides and proteins usually assemble via non-covalent interactions, synthetic conjugates have been developed which covalently link both modalities. The resulting peptide-oligonucleotide conjugates have facilitated novel biological applications as well as the design of functional supramolecular systems and materials. However, despite the importance of concerted protein/oligonucleotide recognition in nature, conjugation approaches have barely utilized the synergistic recognition abilities of such complexes. Herein, the structure-based design of peptide-DNA conjugates that bind RNA through Watson-Crick base pairing combined with peptide-mediated major groove recognition is reported. Two distinct conjugate families with tunable binding characteristics have been designed to adjacently bind a particular RNA sequence. In the resulting ternary complex, their peptide elements are located in proximity, a feature that was used to enable an RNA-templated click reaction. The introduced structure-based design approach opens the door to novel functional biomolecular assemblies.


Subject(s)
DNA , RNA , Base Pairing , Humans , Oligonucleotides , Proteins
10.
Angew Chem Int Ed Engl ; 60(25): 13937-13944, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33783110

ABSTRACT

Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied for example, as inhibitors of protein-protein interactions (PPIs). Even though ß-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of ß-sheet mimetics targeting the intracellular protein ß-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of ß-catenin, a macrocyclic peptide was designed and its crystal structure in complex with ß-catenin obtained. Using this structure, we designed a library of bicyclic ß-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to ß-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other ß-sheet-mediated PPIs.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Peptides/pharmacology , beta Catenin/antagonists & inhibitors , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Models, Molecular , Peptides/chemistry , Wnt Signaling Pathway/drug effects , beta Catenin/metabolism
11.
J Am Chem Soc ; 142(10): 4904-4915, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32058716

ABSTRACT

"Hot loop" protein segments have variable structure and conformation and contribute crucially to protein-protein interactions. We describe a new hot loop mimicking modality, termed PepNats, in which natural product (NP)-inspired structures are incorporated as conformation-determining and -restricting structural elements into macrocyclic hot loop-derived peptides. Macrocyclic PepNats representing hot loops of inducible nitric oxide synthase (iNOS) and human agouti-related protein (AGRP) were synthesized on solid support employing macrocyclization by imine formation and subsequent stereoselective 1,3-dipolar cycloaddition as key steps. PepNats derived from the iNOS DINNN hot loop and the AGRP RFF hot spot sequence yielded novel and potent ligands of the SPRY domain-containing SOCS box protein 2 (SPSB2) that binds to iNOS, and selective ligands for AGRP-binding melanocortin (MC) receptors. NP-inspired fragment absolute configuration determines the conformation of the peptide part responsible for binding. These results demonstrate that combination of NP-inspired scaffolds with peptidic epitopes enables identification of novel hot loop mimics with conformationally constrained and biologically relevant structure.


Subject(s)
Peptides, Cyclic/metabolism , Receptors, Melanocortin/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Agouti-Related Protein/chemistry , Agouti-Related Protein/metabolism , Epitopes , Humans , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/metabolism , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Protein Binding , Protein Conformation , Stereoisomerism
12.
RNA ; 24(11): 1457-1465, 2018 11.
Article in English | MEDLINE | ID: mdl-30093489

ABSTRACT

Structural information about protein-RNA complexes supports the understanding of crucial recognition processes in the cell, and it can allow the development of high affinity ligands to interfere with these processes. In this respect, the identification of amino acid hotspots is particularly important. In contrast to protein-protein interactions, in silico approaches for protein-RNA interactions lag behind in their development. Herein, we report an analysis of available protein-RNA structures. We assembled a data set of 322 crystal and NMR structures and analyzed them regarding interface properties. In addition, we describe a computational alanine-scanning approach which provides interaction scores for interface amino acids, allowing the identification of potential hotspots in protein-RNA interfaces. We have made the computational approach available as an online tool, which allows interaction scores to be calculated for any structure of a protein-RNA complex by uploading atomic coordinates to the PRI HotScore web server (https://pri-hotscore.labs.vu.nl).


Subject(s)
RNA-Binding Proteins/chemistry , RNA/chemistry , Alanine/chemistry , Amino Acids/chemistry , Binding Sites , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Interaction Mapping , RNA/metabolism , RNA-Binding Proteins/metabolism , Structure-Activity Relationship
13.
J Org Chem ; 85(3): 1476-1483, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31790232

ABSTRACT

Protein macrocyclization represents a very efficient strategy to increase the stability of protein tertiary structures. Here, we describe a panel of novel C3-symmetric tris-electrophilic agents and their use for the cyclization of proteins. These electrophiles are reacted with a protein domain harboring three solvent-exposed cysteine residues, resulting in the in situ cyclization of the protein (INCYPRO). We observe a clear dependency of cross-linking rates on the electrophilicity. All nine obtained cross-linked protein versions show considerably increased thermal stability (up to 29 °C increased melting temperature) when compared to that of the linear precursor. Most interestingly, the degree of stabilization correlates with the hydrophilicity of the cross-link. These results will support the development of novel cross-linked proteins and enable a more rational design process.


Subject(s)
Proteins , Cross-Linking Reagents , Cyclization , Protein Stability , Temperature
14.
Chembiochem ; 20(24): 2987-2990, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31680402

ABSTRACT

The acyl-binding UNC119 proteins mediate the activation and transport of various N-myristoylated proteins. In particular, UNC119a plays a crucial role in the completion of cytokinesis. Herein, we report the use of a lipidated peptide originating from the UNC119 binding partner Gnat1 as the basis for the design of lipidated, stabilized α-helical peptides that target UNC119a. By using the hydrocarbon peptide-stapling approach, cell-permeable binders of UNC119a were generated that induced the accumulation of cytokinetic and binucleated cells; this suggests UNC119a as a potential target for the inhibition of cytokinesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Lipid Metabolism , Peptides/metabolism , Peptides/pharmacology , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , HeLa Cells , Humans , Models, Molecular , Molecular Targeted Therapy , Peptides/chemistry , Protein Binding , Protein Conformation, alpha-Helical
15.
Angew Chem Int Ed Engl ; 58(48): 17351-17358, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31539186

ABSTRACT

Protein complex formation depends on the interplay between preorganization and flexibility of the binding epitopes involved. The design of epitope mimetics typically focuses on stabilizing a particular bioactive conformation, often without considering conformational dynamics, which limits the potential of peptidomimetics against challenging targets such as transcription factors. We developed a peptide-derived inhibitor of the NF-Y transcription factor by first constraining the conformation of an epitope through hydrocarbon stapling and then fine-tuning its flexibility. In the initial set of constrained peptides, a single non-interacting α-methyl group was observed to have a detrimental effect on complex stability. Biophysical characterization revealed how this methyl group affects the conformation of the peptide in its bound state. Adaption of the methylation pattern resulted in a peptide that inhibits transcription factor assembly and subsequent recruitment to the target DNA.


Subject(s)
CCAAT-Binding Factor/chemistry , Peptides/chemistry , Protein Multimerization/drug effects , Base Sequence , Binding Sites , Cross-Linking Reagents/chemistry , Crystallization , DNA/chemistry , Epitopes/chemistry , Humans , Macrocyclic Compounds/chemistry , Methylation , Molecular Dynamics Simulation , Peptidomimetics , Protein Binding , Protein Conformation , Thermodynamics
16.
Chemistry ; 24(7): 1544-1553, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29048135

ABSTRACT

Non-natural oligonucleotides represent important (bio)chemical tools and potential therapeutic agents. Backbone modifications altering hybridization properties and biostability can provide useful analogues. Here, we employ an artificial nucleosyl amino acid (NAA) motif for the synthesis of oligonucleotides containing a backbone decorated with primary amines. An oligo-T sequence of this cationic DNA analogue shows significantly increased affinity for complementary DNA. Notably, hybridization with DNA is still governed by Watson-Crick base pairing. However, single base pair mismatches are tolerated and some degree of sequence-independent interactions between the cationic NAA backbone and fully mismatched DNA are observed. These findings demonstrate that a high density of positive charges directly connected to the oligonucleotide backbone can affect Watson-Crick base pairing. This provides a paradigm for the design of therapeutic oligonucleotides with altered backbone charge patterns.


Subject(s)
Base Pairing , DNA/chemistry , Oligonucleotides/chemistry , Base Pair Mismatch , Base Sequence , Cations , Nucleic Acid Hybridization , Oligonucleotides/chemical synthesis , Static Electricity , Temperature , Thermodynamics
17.
Appl Microbiol Biotechnol ; 102(21): 9231-9242, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30136203

ABSTRACT

Mycobacterium tuberculosis (Mtb) codes for 20 cytochrome P450 enzymes (CYPs), considered potential drug-targets due to their essential roles in bacterial viability and host infection. Catalytic activity of mycobacterial CYPs is dependent on electron transfer from a NAD (P)H-ferredoxin-reductase (FNR) and a ferredoxin (Fd). Two FNRs (FdrA and FprA) and five ferredoxins (Fdx, FdxA, FdxC, FdxD, and Rv1786) have been found in the Mtb genome. However, as of yet, the cognate redox partnerships have not been fully established. This is confounded by the fact that heterologous redox partners are routinely used to reconstitute Mtb CYP metabolism. To this end, this study aimed to biochemically characterize and identify cognate redox partnerships for Mtb CYPs. Interestingly, all combinations of FNRs and ferredoxins were active in the reduction of oxidized cytochrome c, but steady-state kinetic assays revealed FdxD as the most efficient redox partner for FdrA, whereas Fdx coupled preferably with FprA. CYP121A1, CYP124A1, CYP125A1, and CYP142A1 metabolism with the cognate redox partners was reconstituted in vitro showing an unanticipated selectivity in the requirement for electron transfer partnership, which did not necessarily correlate with proximity in the genome. This is the first description of microbial P450 metabolism in which multiple ferredoxins are functionally linked to multiple CYPs.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Ferredoxins/metabolism , Mycobacterium tuberculosis/metabolism , Amino Acid Sequence , Electron Transport/physiology , Kinetics , Oxidation-Reduction , Oxidoreductases/metabolism , Sequence Alignment
18.
Angew Chem Int Ed Engl ; 57(52): 17079-17083, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30411434

ABSTRACT

The understanding of protein folding and assembly is of central importance for the design of proteins and enzymes with novel or improved functions. Minimalistic model systems, such as coiled-coils, provide an excellent platform to improve this understanding and to construct novel molecular devices. Along those lines, we designed a conformational switch that is composed of two coiled-coil forming peptides and a central binding epitope. In the absence of a binding partner, this switch adopts a hairpin-like conformation that opens upon receptor binding. Variation of the coiled-coil length modulates the strength of the intramolecular constraint. The two conformational states of this switch have been linked with characteristic fluorescent properties, which enables the detection of the receptor in real-time.


Subject(s)
Peptides/chemistry , Proteins/analysis , Fluorescence , Models, Molecular , Protein Conformation , Protein Folding
19.
Angew Chem Int Ed Engl ; 57(35): 11164-11170, 2018 08 27.
Article in English | MEDLINE | ID: mdl-29847004

ABSTRACT

Increased tolerance of enzymes towards thermal and chemical stress is required for many applications and can be achieved by macrocyclization of the enzyme resulting in the stabilizing of its tertiary structure. Thus far, macrocyclization approaches utilize a very limited structural diversity, which complicates the design process. Herein, we report an approach that enables cyclization through the installation of modular crosslinks into native proteins composed entirely of proteinogenic amino acids. Our stabilization procedure involves the introduction of three surface-exposed cysteine residues, which are reacted with a triselectrophile, resulting in the in situ cyclization of the protein (INCYPRO). A bicyclic version of sortase A was designed that exhibits increased tolerance towards thermal as well as chemical denaturation, and proved to be efficient in protein labeling under denaturing conditions. In addition, we applied INCYPRO to the KIX domain, resulting in up to 24 °C increased thermal stability.


Subject(s)
Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Cross-Linking Reagents/chemistry , Cysteine Endopeptidases/chemistry , Cysteine/chemistry , Staphylococcus aureus/enzymology , Animals , Cyclization , Enzyme Stability , Humans , Models, Molecular , Protein Conformation , Protein Denaturation , Protein Domains , Staphylococcus aureus/chemistry , Temperature
20.
Chemistry ; 23(64): 16157-16161, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-28777495

ABSTRACT

Constraining a peptide in its bioactive conformation by macrocyclization represents a powerful strategy to design modulators of challenging biomolecular targets. This holds particularly true for the development of inhibitors of protein-protein interactions which often involve interfaces lacking defined binding pockets. Such flat surfaces are demanding targets for traditional small molecules rendering macrocyclic peptides promising scaffolds for novel therapeutics. However, the contribution of peptide dynamics to binding kinetics is barely understood which impedes the design process. Herein, we report unexpected trends in the binding kinetics of two closely related macrocyclic peptides that bind their receptor protein with high affinity. Isothermal titration calorimetry, 19 F NMR experiments and molecular dynamics simulations reveal that increased conformational flexibility of the macrocycle-receptor complex reduces dissociation rates and contributes to complex stability. This observation has impact on macrocycle design strategies that have so far mainly focused on the stabilization of bioactive ligand conformations.


Subject(s)
Peptides/metabolism , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Binding Sites , Calorimetry , Cyclization , Ligands , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL