Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters

Publication year range
1.
Brain ; 147(7): 2308-2324, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38437860

ABSTRACT

Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.


Subject(s)
Cholinergic Neurons , Disease Progression , Lewy Body Disease , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Humans , Cholinergic Neurons/pathology , Cholinergic Neurons/metabolism , Brain/pathology , Brain/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/metabolism
2.
Brain ; 147(1): 255-266, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37975822

ABSTRACT

Dementia with Lewy bodies is characterized by a high burden of autonomic dysfunction and Lewy pathology in peripheral organs and components of the sympathetic and parasympathetic nervous system. Parasympathetic terminals may be quantified with 18F-fluoroetoxybenzovesamicol, a PET tracer that binds to the vesicular acetylcholine transporter in cholinergic presynaptic terminals. Parasympathetic imaging may be useful for diagnostics, improving our understanding of autonomic dysfunction and for clarifying the spatiotemporal relationship of neuronal degeneration in prodromal disease. Therefore, we aimed to investigate the cholinergic parasympathetic integrity in peripheral organs and central autonomic regions of subjects with dementia with Lewy bodies and its association with subjective and objective measures of autonomic dysfunction. We hypothesized that organs with known parasympathetic innervation, especially the pancreas and colon, would have impaired cholinergic integrity. To achieve these aims, we conducted a cross-sectional comparison study including 23 newly diagnosed non-diabetic subjects with dementia with Lewy bodies (74 ± 6 years, 83% male) and 21 elderly control subjects (74 ± 6 years, 67% male). We obtained whole-body images to quantify PET uptake in peripheral organs and brain images to quantify PET uptake in regions of the brainstem and hypothalamus. Autonomic dysfunction was assessed with questionnaires and measurements of orthostatic blood pressure. Subjects with dementia with Lewy bodies displayed reduced cholinergic tracer uptake in the pancreas (32% reduction, P = 0.0003) and colon (19% reduction, P = 0.0048), but not in organs with little or no parasympathetic innervation. Tracer uptake in a region of the medulla oblongata overlapping the dorsal motor nucleus of the vagus correlated with autonomic symptoms (rs = -0.54, P = 0.0077) and changes in orthostatic blood pressure (rs = 0.76, P < 0.0001). Tracer uptake in the pedunculopontine region correlated with autonomic symptoms (rs = -0.52, P = 0.0104) and a measure of non-motor symptoms (rs = -0.47, P = 0.0230). In conclusion, our findings provide the first imaging-based evidence of impaired cholinergic integrity of the pancreas and colon in dementia with Lewy bodies. The observed changes may reflect parasympathetic denervation, implying that this process is initiated well before the point of diagnosis. The findings also support that cholinergic denervation in the brainstem contributes to dysautonomia.


Subject(s)
Autonomic Nervous System Diseases , Lewy Body Disease , Humans , Male , Aged , Female , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/pathology , Cross-Sectional Studies , Autonomic Nervous System Diseases/diagnostic imaging , Autonomic Nervous System Diseases/etiology , Pancreas/pathology , Cholinergic Agents , Colon/pathology
3.
Neuroimage ; 289: 120537, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38367651

ABSTRACT

BACKGROUND: [18F]flortaucipir (FTP) tau PET quantification is known to be affected by non-specific binding in off-target regions. Although partial volume correction (PVC) techniques partially account for this effect, their inclusion may also introduce noise and variability into the quantification process. While the impact of these effects has been studied in cross-sectional designs, the benefits and drawbacks of PVC on longitudinal FTP studies is still under scrutiny. The aim of this work was to study the performance of the most common PVC techniques for longitudinal FTP imaging. METHODS: A cohort of 247 individuals from the Alzheimer's Disease Neuroimaging Initiative with concurrent baseline FTP-PET, amyloid-beta (Aß) PET and structural MRI, as well as with follow-up FTP-PET and MRI were included in the study. FTP-PET scans were corrected for partial volume effects using Meltzer's, a simple and popular analytical PVC, and both the region-based voxel-wise (RBV) and the iterative Yang (iY) corrections. FTP SUVR values and their longitudinal rates of change were calculated for regions of interest (ROI) corresponding to Braak Areas I-VI, for a temporal meta-ROI and for regions typically displaying off-target FTP binding (caudate, putamen, pallidum, thalamus, choroid plexus, hemispheric white matter, cerebellar white matter, and cerebrospinal fluid). The longitudinal correlation between binding in off-target and target ROIs was analysed for the different PVCs. Additionally, group differences in longitudinal FTP SUVR rates of change between Aß-negative (A-) and Aß-positive (A+), and between cognitively unimpaired (CU) and cognitively impaired (CI) individuals, were studied. Finally, we compared the ability of different partial-volume-corrected baseline FTP SUVRs to predict longitudinal brain atrophy and cognitive decline. RESULTS: Among off-target ROIs, hemispheric white matter showed the highest correlation with longitudinal FTP SUVR rates from cortical target ROIs (R2=0.28-0.82), with CSF coming in second (R2=0.28-0.42). Application of voxel-wise PVC techniques minimized this correlation, with RBV performing best (R2=0.00-0.07 for hemispheric white matter). PVC also increased group differences between CU and CI individuals in FTP SUVR rates of change across all target regions, with RBV again performing best (No PVC: Cohen's d = 0.26-0.66; RBV: Cohen's d = 0.43-0.74). These improvements were not observed for differentiating A- from A+ groups. Additionally, voxel-wise PVC techniques strengthened the correlation between baseline FTP SUVR and longitudinal grey matter atrophy and cognitive decline. CONCLUSION: Quantification of longitudinal FTP SUVR rates of change is affected by signal from off-target regions, especially the hemispheric white matter and the CSF. Voxel-wise PVC techniques significantly reduce this effect. PVC provided a significant but modest benefit for tasks involving the measurement of group-level longitudinal differences. These findings are particularly relevant for the estimations of sample sizes and analysis methodologies of longitudinal group studies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Brain/metabolism , Cross-Sectional Studies , Alzheimer Disease/metabolism , Longitudinal Studies , Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/pathology , Positron-Emission Tomography/methods , Atrophy/pathology , tau Proteins/metabolism
4.
Brain ; 146(11): 4520-4531, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37284793

ABSTRACT

A clinical diagnosis of Alzheimer's disease dementia (ADD) encompasses considerable pathological and clinical heterogeneity. While Alzheimer's disease patients typically show a characteristic temporo-parietal pattern of glucose hypometabolism on 18F-fluorodeoxyglucose (FDG)-PET imaging, previous studies have identified a subset of patients showing a distinct posterior-occipital hypometabolism pattern associated with Lewy body pathology. Here, we aimed to improve the understanding of the clinical relevance of these posterior-occipital FDG-PET patterns in patients with Alzheimer's disease-like amnestic presentations. Our study included 1214 patients with clinical diagnoses of ADD (n = 305) or amnestic mild cognitive impairment (aMCI, n = 909) from the Alzheimer's Disease Neuroimaging Initiative, who had FDG-PET scans available. Individual FDG-PET scans were classified as being suggestive of Alzheimer's (AD-like) or Lewy body (LB-like) pathology by using a logistic regression classifier trained on a separate set of patients with autopsy-confirmed Alzheimer's disease or Lewy body pathology. AD- and LB-like subgroups were compared on amyloid-ß and tau-PET, domain-specific cognitive profiles (memory versus executive function performance), as well as the presence of hallucinations and their evolution over follow-up (≈6 years for aMCI, ≈3 years for ADD). Around 12% of the aMCI and ADD patients were classified as LB-like. For both aMCI and ADD patients, the LB-like group showed significantly lower regional tau-PET burden than the AD-like subgroup, but amyloid-ß load was only significantly lower in the aMCI LB-like subgroup. LB- and AD-like subgroups did not significantly differ in global cognition (aMCI: d = 0.15, P = 0.16; ADD: d = 0.02, P = 0.90), but LB-like patients exhibited a more dysexecutive cognitive profile relative to the memory deficit (aMCI: d = 0.35, P = 0.01; ADD: d = 0.85 P < 0.001), and had a significantly higher risk of developing hallucinations over follow-up [aMCI: hazard ratio = 1.8, 95% confidence interval = (1.29, 3.04), P = 0.02; ADD: hazard ratio = 2.2, 95% confidence interval = (1.53, 4.06) P = 0.01]. In summary, a sizeable group of clinically diagnosed ADD and aMCI patients exhibit posterior-occipital FDG-PET patterns typically associated with Lewy body pathology, and these also show less abnormal Alzheimer's disease biomarkers as well as specific clinical features typically associated with dementia with Lewy bodies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Fluorodeoxyglucose F18 , Lewy Bodies/pathology , Amyloid beta-Peptides , Positron-Emission Tomography/methods , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Hallucinations , Lewy Body Disease/diagnostic imaging
5.
Brain ; 146(12): 4964-4973, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37403733

ABSTRACT

Cognitive decline in Parkinson's disease is related to cholinergic system degeneration, which can be assessed in vivo using structural MRI markers of basal forebrain volume and PET measures of cortical cholinergic activity. In the present study we aimed to examine the interrelation between basal forebrain degeneration and PET-measured depletion of cortical acetylcholinesterase activity as well as their relative contribution to cognitive impairment in Parkinson's disease. This cross-sectional study included 143 Parkinson's disease participants without dementia and 52 healthy control participants who underwent structural MRI, PET scanning with 11C-methyl-4-piperidinyl propionate (PMP) as a measure of cortical acetylcholinesterase activity, and a detailed cognitive assessment. Based on the fifth percentile of the overall cortical PMP PET signal from the control group, people with Parkinson's disease were subdivided into a normo-cholinergic (n = 94) and a hypo-cholinergic group (n = 49). Volumes of functionally defined posterior and anterior basal forebrain subregions were extracted using an established automated MRI volumetry approach based on a stereotactic atlas of cholinergic basal forebrain nuclei. We used Bayesian t-tests to compare basal forebrain volumes between controls, and normo- and hypo-cholinergic Parkinson's participants after covarying out age, sex and years of education. Associations between the two cholinergic imaging measures were assessed across all people with Parkinson's disease using Bayesian correlations and their respective relations with performance in different cognitive domains were assessed with Bayesian ANCOVAs. As a specificity analysis, hippocampal volume was added to the analysis. We found evidence for a reduction of posterior basal forebrain volume in the hypo-cholinergic compared to both normo-cholinergic Parkinson's disease [Bayes factor against the null model (BF10) = 8.2] and control participants (BF10 = 6.0), while for the anterior basal forebrain the evidence was inconclusive (BF10 < 3). In continuous association analyses, posterior basal forebrain volume was significantly associated with cortical PMP PET signal in a temporo-posterior distribution. The combined models for the prediction of cognitive scores showed that both cholinergic markers (posterior basal forebrain volume and cortical PMP PET signal) were independently related to multi-domain cognitive deficits, and were more important predictors for all cognitive scores, including memory scores, than hippocampal volume. We conclude that degeneration of the posterior basal forebrain in Parkinson's disease is accompanied by functional cortical changes in acetylcholinesterase activity and that both PET and MRI cholinergic imaging markers are independently associated with multi-domain cognitive deficits in Parkinson's disease without dementia. Comparatively, hippocampal atrophy only seems to have minimal involvement in the development of early cognitive impairment in Parkinson's disease.


Subject(s)
Basal Forebrain , Cognitive Dysfunction , Dementia , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Acetylcholinesterase/metabolism , Bayes Theorem , Cross-Sectional Studies , Positron-Emission Tomography/methods , Cholinergic Agents , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Magnetic Resonance Imaging , Dementia/complications , Basal Forebrain/diagnostic imaging , Basal Forebrain/metabolism
6.
Brain ; 146(9): 3690-3704, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37279796

ABSTRACT

Cholinergic changes play a fundamental role in the natural history of dementia with Lewy bodies and Lewy body disease in general. Despite important achievements in the field of cholinergic research, significant challenges remain. We conducted a study with four main objectives: (i) to examine the integrity of cholinergic terminals in newly diagnosed dementia with Lewy bodies; (ii) to disentangle the cholinergic contribution to dementia by comparing cholinergic changes in Lewy body patients with and without dementia; (iii) to investigate the in vivo relationship between cholinergic terminal loss and atrophy of cholinergic cell clusters in the basal forebrain at different stages of Lewy body disease; and (iv) to test whether any asymmetrical degeneration in cholinergic terminals would correlate with motor dysfunction and hypometabolism. To achieve these objectives, we conducted a comparative cross-sectional study of 25 newly diagnosed dementia with Lewy bodies patients (age 74 ± 5 years, 84% male), 15 healthy control subjects (age 75 ± 6 years, 67% male) and 15 Parkinson's disease patients without dementia (age 70 ± 7 years, 60% male). All participants underwent 18F-fluoroetoxybenzovesamicol PET and high-resolution structural MRI. In addition, we collected clinical 18F-fluorodeoxyglucose PET images. Brain images were normalized to standard space and regional tracer uptake and volumetric indices of basal forebrain degeneration were extracted. Patients with dementia showed spatially distinct reductions in cholinergic terminals across the cerebral cortex, limbic system, thalamus and brainstem. Also, cholinergic terminal binding in cortical and limbic regions correlated quantitatively and spatially with atrophy of the basal forebrain. In contrast, patients without dementia showed decreased cholinergic terminal binding in the cerebral cortex despite preserved basal forebrain volumes. In patients with dementia, cholinergic terminal reductions were most severe in limbic regions and least severe in occipital regions compared to those without dementia. Interhemispheric asymmetry of cholinergic terminals correlated with asymmetry of brain metabolism and lateralized motor function. In conclusion, this study provides robust evidence for severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies, which correlates with structural imaging measures of cholinergic basal forebrain degeneration. In patients without dementia, our findings suggest that loss of cholinergic terminal function occurs 'before' neuronal cell degeneration. Moreover, the study supports that degeneration of the cholinergic system is important for brain metabolism and may be linked with degeneration in other transmitter systems. Our findings have implications for understanding how cholinergic system pathology contributes to the clinical features of Lewy body disease, changes in brain metabolism and disease progression patterns.


Subject(s)
Lewy Body Disease , Humans , Male , Aged , Aged, 80 and over , Middle Aged , Female , Lewy Body Disease/metabolism , Lewy Bodies/metabolism , Cross-Sectional Studies , Cholinergic Agents , Atrophy/pathology
7.
Neuroimage ; 269: 119908, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36720436

ABSTRACT

INTRODUCTION: [18F]fluoroetoxybenzovesamicol ([18F]FEOBV) is a positron emission topography (PET) tracer for the vesicular acetylcholine transporter (VAChT), a protein located predominantly in synaptic vesicles in cholinergic nerve terminals. We aimed to use [18F]FEOBV PET to study the cholinergic topography of the healthy human brain. MATERIALS AND METHODS: [18F]FEOBV PET brain data volumes of healthy elderly humans were normalized to standard space and intensity-normalized to the white matter. Stereotactic atlases of regions of interest were superimposed to describe and quantify tracer distribution. The spatial distribution of [18F]FEOBV PET uptake was compared with histological and gene expression data. RESULTS: Twenty participants of both sexes and a mean age of 73.9 ± 6.0 years, age-range [64; 86], were recruited. Highest tracer binding was present in the striatum, some thalamic nuclei, and the basal forebrain. Intermediate binding was found in most nuclei of the brainstem, thalamus, and hypothalamus; the vermis and flocculonodular lobe; and the hippocampus, amygdala, insula, cingulate, olfactory cortex, and Heschl's gyrus. Lowest binding was present in most areas of the cerebral cortex, and in the cerebellar nuclei and hemispheres. The spatial distribution of tracer correlated with immunohistochemical post-mortem data, as well as with regional expression levels of SLC18A3, the VAChT coding gene. DISCUSSION: Our in vivo findings confirm the regional cholinergic distribution in specific brain structures as described post-mortem. A positive spatial correlation between tracer distribution and regional gene expression levels further corroborates [18F]FEOBV PET as a validated tool for in vivo cholinergic imaging. The study represents an advancement in the continued efforts to delineate the spatial topography of the human cholinergic system in vivo.


Subject(s)
Electrons , Positron-Emission Tomography , Aged , Female , Humans , Male , Middle Aged , Brain/metabolism , Cholinergic Agents , Piperidines , Positron-Emission Tomography/methods , Vesicular Acetylcholine Transport Proteins/metabolism , Fluorine Radioisotopes
8.
Neurobiol Dis ; 180: 106070, 2023 05.
Article in English | MEDLINE | ID: mdl-36898615

ABSTRACT

BACKGROUND: It is not clear to which degree limbic TDP-43 pathology associates with a cholinergic deficit in the absence of Alzheimer's disease (AD) pathology. OBJECTIVE: Replicate and extend recent evidence on cholinergic basal forebrain atrophy in limbic TDP-43 and evaluate MRI based patterns of atrophy as a surrogate marker for TDP-43. METHODS: We studied ante-mortem MRI data of 11 autopsy cases with limbic TDP-43 pathology, 47 cases with AD pathology, and 26 mixed AD/TDP-43 cases from the ADNI autopsy sample, and 17 TDP-43, 170 AD, and 58 mixed AD/TDP-43 cases from the NACC autopsy sample. Group differences in basal forebrain and other brain volumes of interest were assessed using Bayesian ANCOVA. We assessed the diagnostic utility of MRI based patterns of brain atrophy using voxel-based receiver operating characteristics and random forest analyses. RESULTS: In the NACC sample, we found moderate evidence for the absence of a difference in basal forebrain volumes between AD, TDP-43, and mixed pathologies (Bayes factor(BF)10 = 0.324), and very strong evidence for lower hippocampus volume in TDP-43 and mixed cases compared with AD cases (BF10 = 156.1). The ratio of temporal to hippocampus volume reached an AUC of 75% for separating pure TDP-43 from pure AD cases. Random-forest analysis between TDP-43, AD, and mixed pathology reached only a multiclass AUC of 0.63 based on hippocampus, middle-inferior temporal gyrus, and amygdala volumes. Findings in the ADNI sample were consistent with these results. CONCLUSION: A comparable degree of basal forebrain atrophy in pure TDP-43 cases compared to AD cases encourages studies on the effect of cholinergic treatment in amnestic dementia due to TDP-43. A distinct pattern of temporo-limbic brain atrophy may serve as a surrogate marker to enrich samples in clinical trials for the presence of TDP-43 pathology.


Subject(s)
Alzheimer Disease , Basal Forebrain , Humans , Alzheimer Disease/pathology , Bayes Theorem , Basal Forebrain/diagnostic imaging , Basal Forebrain/pathology , Magnetic Resonance Imaging , Atrophy/pathology , DNA-Binding Proteins/metabolism , Cholinergic Agents
9.
Neurobiol Dis ; 183: 106182, 2023 07.
Article in English | MEDLINE | ID: mdl-37286171

ABSTRACT

BACKGROUND AND OBJECTIVES: It has been recently suggested that LRRK2 mutations are associated with a more benign clinical phenotype and a potentially more preserved cholinergic function in Parkinson's disease (PD). However, to our knowledge, no studies have tested whether the better clinical progression observed in LRRK2-PD patients is associated with more preserved volumes of a cholinergic brain area, the basal forebrain (BF). To address this hypothesis, here we compared BF volumes in LRRK2 carriers with and without PD with respect to idiopathic PD (iPD) patients and controls, and assessed whether they are associated with better clinical progression observed in LRRK2-PD compared to iPD. METHODS: Thirty-one symptomatic LRRK2-PD patients and 13 asymptomatic LRRK2 individuals were included from the Parkinson's Progression Markers Initiative. In addition, 31 patients with iPD and 13 healthy controls matched to the previous groups were also included. BF volumes were automatically extracted from baseline T1-weighted MRI scans using a stereotactic atlas of cholinergic nuclei. These volumes were then compared between groups and their relationship with longitudinal cognitive changes was evaluated using linear mixed effects models. Mediation analyses assessed whether BF volumes mediated differences in cognitive trajectories between groups. RESULTS: LRRK2-PD patients showed significantly higher BF volumes compared to iPD (P = 0.019) as did asymptomatic LRRK2 subjects compared to controls (P = 0.008). There were no other significant differences in cortical regions or subcortical volumes between these groups. BF volumes predicted longitudinal decline in several cognitive functions in iPD patients but not in LRRK2-PD, who did not show cognitive changes over a 4-year follow-up period. BF volumes were a significant mediator of the different cognitive trajectories between iPD and LRRK2-PD patients (95% CI 0.056-2.955). DISCUSSION: Our findings suggest that mutations in LRRK2 are associated with increased BF volumes, potentially reflecting a compensatory hypercholinergic state that could prevent cognitive decline in LRRK2-PD patients.


Subject(s)
Basal Forebrain , Cognitive Dysfunction , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Parkinson Disease/complications , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation/genetics , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/complications , Cholinergic Agents , Disease Progression
10.
Acta Neuropathol ; 145(2): 159-173, 2023 02.
Article in English | MEDLINE | ID: mdl-36512061

ABSTRACT

An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Alzheimer Disease/pathology , Frontotemporal Dementia/pathology , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics
11.
Mov Disord ; 38(10): 1871-1880, 2023 10.
Article in English | MEDLINE | ID: mdl-37492892

ABSTRACT

BACKGROUND: Degeneration of the cortically-projecting cholinergic basal forebrain (cBF) is a well-established pathologic correlate of cognitive decline in Parkinson's disease (PD). In Alzheimer's disease (AD) the effect of cBF degeneration on cognitive decline was found to be mediated by parallel atrophy of denervated cortical areas. OBJECTIVES: To examine whether the association between cBF degeneration and cognitive decline in PD is mediated by parallel atrophy of cortical areas and whether these associations depend on the presence of comorbid AD pathology. METHODS: We studied 162 de novo PD patients who underwent serial 3 T magnetic resonance imaging scanning (follow-up: 2.33 ± 1.46 years) within the Parkinson's Progression Markers Initiative. cBF volume and regional cortical thickness were automatically calculated using established procedures. Individual slopes of structural brain changes and cognitive decline were estimated using linear-mixed models. Associations between longitudinal cBF degeneration, regional cortical thinning, and cognitive decline were assessed using regression analyses and mediation effects were assessed using nonparametric bootstrap. Complementary analyses assessed the effect of amyloid-ß biomarker positivity on these associations. RESULTS: After controlling for global brain atrophy, longitudinal cBF degeneration was highly correlated with faster cortical thinning (PFDR < 0.05), and thinning in cBF-associated cortical areas mediated the association between cBF degeneration and cognitive decline (rcBF-MoCA = 0.30, P < 0.001). Interestingly, both longitudinal cBF degeneration and its association with cortical thinning were largely independent of amyloid-ß status. CONCLUSIONS: cBF degeneration in PD is linked to parallel thinning of cortical target areas, which mediate the effect on cognitive decline. These associations are independent of amyloid-ß status, indicating that they reflect proper features of PD pathophysiology. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Alzheimer Disease , Basal Forebrain , Cognitive Dysfunction , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Basal Forebrain/diagnostic imaging , Cerebral Cortical Thinning/pathology , Neuropsychological Tests , Cognitive Dysfunction/etiology , Cognitive Dysfunction/complications , Amyloid beta-Peptides , Alzheimer Disease/pathology , Atrophy/pathology , Magnetic Resonance Imaging/methods
12.
Mov Disord ; 38(5): 755-763, 2023 05.
Article in English | MEDLINE | ID: mdl-36912400

ABSTRACT

BACKGROUND: Peripheral inflammatory immune responses are suggested to play a major role in dopaminergic degeneration in Parkinson's disease (PD). The neutrophil-to-lymphocyte ratio (NLR) is a well-established biomarker of systemic inflammation in PD. Degeneration of the nigrostriatal dopaminergic system can be assessed in vivo using [123 I]FP-CIT single photon emission computed tomography imaging of striatal dopamine transporter (DAT) density. OBJECTIVES: To assess the relationship between the peripheral immune profile (NLR, lymphocytes, and neutrophils) and striatal DAT density in patients with PD. METHODS: We assessed clinical features, the peripheral immune profile, and striatal [123 I]FP-CIT DAT binding levels of 211 patients with PD (primary-cohort). Covariate-controlled associations between the immune response and striatal DAT levels were assessed using linear regression analyses. For replication purposes, we also studied a separate cohort of 344 de novo patients with PD enrolled in the Parkinson's Progression Markers Initiative (PPMI-cohort). RESULTS: A higher NLR was significantly associated with lower DAT levels in the caudate (primary-cohort: ß = -0.01, p < 0.001; PPMI-cohort: ß = -0.05, p = 0.05) and the putamen (primary-cohort: ß = -0.05, p = 0.02; PPMI-cohort: ß = -0.06, p = 0.02). Intriguingly, a lower lymphocyte count was significantly associated with lower DAT levels in both the caudate (primary-cohort: ß = +0.09, p < 0.05; PPMI-cohort: ß = +0.11, p = 0.02) and the putamen (primary-cohort: ß = +0.09, p < 0.05, PPMI-cohort: ß = +0.14, p = 0.01), but an association with the neutrophil count was not consistently observed (caudate; primary-cohort: ß = -0.05, p = 0.02; PPMI-cohort: ß = 0, p = 0.94; putamen; primary-cohort: ß = -0.04, p = 0.08; PPMI-cohort: ß = -0.01, p = 0.73). CONCLUSIONS: Our findings across two independent cohorts suggest a relationship between systemic inflammation and dopaminergic degeneration in patients with PD. This relationship was mainly driven by the lymphocyte count. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Tropanes , Dopamine Plasma Membrane Transport Proteins/metabolism , Corpus Striatum/metabolism , Tomography, Emission-Computed, Single-Photon/methods , Inflammation/diagnostic imaging
13.
Alzheimers Dement ; 19(4): 1234-1244, 2023 04.
Article in English | MEDLINE | ID: mdl-35971593

ABSTRACT

INTRODUCTION: Limbic age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is common in advanced age and can underlie a clinical presentation mimicking Alzheimer's disease (AD). We studied whether an autopsy-derived fluorodeoxyglucose positron emission tomography (FDG-PET) signature of LATE-NC provides clinical utility for differential diagnosis of amnestic dementia patients. METHODS: Ante mortem FDG-PET patterns from autopsy-confirmed LATE-NC (N = 7) and AD (N = 23) patients were used to stratify an independent cohort of clinically diagnosed AD dementia patients (N = 242) based on individual FDG-PET profiles. RESULTS: Autopsy-confirmed LATE-NC and AD groups showed markedly distinct temporo-limbic and temporo-parietal FDG-PET patterns, respectively. Clinically diagnosed AD dementia patients showing a LATE-NC-like FDG-PET pattern (N = 25, 10%) were significantly older, showed less abnormal AD biomarker levels, lower APOE ε4, and higher TMEM106B risk allele load. Clinically, they exhibited a more memory-predominant profile and a generally slower disease course. DISCUSSION: An autopsy-derived temporo-limbic FDG-PET signature identifies older amnestic patients whose clinical, genetic, and molecular biomarker features are consistent with underlying LATE-NC.


Subject(s)
Alzheimer Disease , Fluorodeoxyglucose F18 , Humans , Autopsy , Diagnosis, Differential , Brain/pathology , Positron-Emission Tomography/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Biomarkers , Membrane Proteins , Nerve Tissue Proteins
14.
Alzheimers Dement ; 19(1): 318-332, 2023 01.
Article in English | MEDLINE | ID: mdl-36239924

ABSTRACT

Dementia with Lewy bodies (DLB) is clinically defined by the presence of visual hallucinations, fluctuations, rapid eye movement (REM) sleep behavioral disorder, and parkinsonism. Neuropathologically, it is characterized by the presence of Lewy pathology. However, neuropathological studies have demonstrated the high prevalence of coexistent Alzheimer's disease, TAR DNA-binding protein 43 (TDP-43), and cerebrovascular pathologic cases. Due to their high prevalence and clinical impact on DLB individuals, clinical trials should account for these co-pathologies in their design and selection and the interpretation of biomarkers values and outcomes. Here we discuss the frequency of the different co-pathologies in DLB and their cross-sectional and longitudinal clinical impact. We then evaluate the utility and possible applications of disease-specific and disease-nonspecific biomarkers and how co-pathologies can impact these biomarkers. We propose a framework for integrating multi-modal biomarker fingerprints and step-wise selection and assessment of DLB individuals for clinical trials, monitoring target engagement, and interpreting outcomes in the setting of co-pathologies.


Subject(s)
Lewy Body Disease , Humans , Alzheimer Disease/pathology , Biomarkers , Clinical Trials as Topic , Cross-Sectional Studies , Lewy Body Disease/complications , Lewy Body Disease/pathology , Parkinsonian Disorders/etiology , REM Sleep Behavior Disorder/etiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
15.
Alzheimers Dement ; 19(11): 4817-4827, 2023 11.
Article in English | MEDLINE | ID: mdl-37021589

ABSTRACT

BACKGROUND: Basal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. METHODS: We included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. RESULTS: In DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DISCUSSION: BF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.


Subject(s)
Alzheimer Disease , Basal Forebrain , Down Syndrome , Humans , Adult , Alzheimer Disease/pathology , Down Syndrome/diagnostic imaging , Down Syndrome/complications , Atrophy/pathology , Biomarkers/cerebrospinal fluid
16.
Mol Psychiatry ; 26(2): 614-628, 2021 02.
Article in English | MEDLINE | ID: mdl-30899092

ABSTRACT

In Alzheimer's disease (AD), a single-nucleotide polymorphism in the gene encoding brain-derived neurotrophic factor (BDNFVal66Met) is associated with worse impact of primary AD pathology (beta-amyloid, Aß) on neurodegeneration and cognitive decline, rendering BDNFVal66Met an important modulating factor of cognitive impairment in AD. However, the effect of BDNFVal66Met on functional networks that may underlie cognitive impairment in AD is poorly understood. Using a cross-validation approach, we first explored in subjects with autosomal dominant AD (ADAD) from the Dominantly Inherited Alzheimer Network (DIAN) the effect of BDNFVal66Met on resting-state fMRI assessed functional networks. In seed-based connectivity analysis of six major large-scale networks, we found a stronger decrease of hippocampus (seed) to medial-frontal connectivity in the BDNFVal66Met carriers compared to BDNFVal homozogytes. BDNFVal66Met was not associated with connectivity in any other networks. Next, we tested whether the finding of more pronounced decrease in hippocampal-medial-frontal connectivity in BDNFVal66Met could be also found in elderly subjects with sporadically occurring Aß, including a group with subjective cognitive decline (N = 149, FACEHBI study) and a group ranging from preclinical to AD dementia (N = 114, DELCODE study). In both of these independently recruited groups, BDNFVal66Met was associated with a stronger effect of more abnormal Aß-levels (assessed by biofluid-assay or amyloid-PET) on hippocampal-medial-frontal connectivity decreases, controlled for hippocampus volume and other confounds. Lower hippocampal-medial-frontal connectivity was associated with lower global cognitive performance in the DIAN and DELCODE studies. Together these results suggest that BDNFVal66Met is selectively associated with a higher vulnerability of hippocampus-frontal connectivity to primary AD pathology, resulting in greater AD-related cognitive impairment.


Subject(s)
Alzheimer Disease , Brain-Derived Neurotrophic Factor/genetics , Cognitive Dysfunction , Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Brain/metabolism , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Polymorphism, Single Nucleotide , Positron-Emission Tomography
17.
Eur J Neurol ; 29(5): 1394-1401, 2022 05.
Article in English | MEDLINE | ID: mdl-35122358

ABSTRACT

BACKGROUND AND PURPOSE: Currently, the extent of cholinergic basal forebrain atrophy in relatively pure limbic TAR DNA-binding protein 43 (TDP-43) pathology compared with relatively pure Alzheimer disease (AD) is unclear. METHODS: We compared antemortem magnetic resonance imaging (MRI)-based atrophy of the basal forebrain and medial and lateral temporal lobe volumes between 10 autopsy cases with limbic TDP-43 pathology and 33 cases with AD pathology on postmortem neuropathologic examination from the Alzheimer's Disease Neuroimaging Initiative cohort. For reference, we studied MRI volumes from cognitively healthy, amyloid positron emission tomography-negative subjects (n = 145). Group differences were assessed using Bayesian analysis of covariance. In addition, we assessed brain-wide regional volume changes using partial least squares regression (PLSR). RESULTS: We found extreme evidence (Bayes factor [BF]01  > 600) for a smaller basal forebrain volume in both TDP-43 and AD cases compared with amyloid-negative controls, and moderate evidence (BF01  = 4.9) that basal forebrain volume was not larger in TDP-43 than in AD cases. The ratio of hippocampus to lateral temporal lobe volumes discriminated between TDP-43 and AD cases with an accuracy of 0.78. PLSR showed higher gray matter in lateral temporal lobes and cingulate and precuneus, and reduced gray matter in precentral and postcentral gyri and hippocampus in TDP-43 compared with AD cases. CONCLUSIONS: Atrophy of the cholinergic basal forebrain appears to be similarly pronounced in cases with limbic TDP-43 pathology as in AD. This suggests that a clinical trial of the efficacy of cholinesterase inhibitors in amyloid-negative cases with amnestic dementia and an imaging signature of TDP-43 pathology may be warranted.


Subject(s)
Alzheimer Disease , Basal Forebrain , Alzheimer Disease/pathology , Atrophy/pathology , Basal Forebrain/diagnostic imaging , Basal Forebrain/metabolism , Basal Forebrain/pathology , Bayes Theorem , Cholinergic Agents/metabolism , DNA-Binding Proteins , Humans , Magnetic Resonance Imaging
18.
Eur J Neurol ; 29(12): 3720-3727, 2022 12.
Article in English | MEDLINE | ID: mdl-35852918

ABSTRACT

BACKGROUND AND PURPOSE: Reduced facial expression of emotions is a very frequent symptom of Parkinson's disease (PD) and has been considered part of the motor features of the disease. However, the neural correlates of hypomimia and the relationship between hypomimia and other non-motor symptoms of PD are poorly understood. METHODS: The clinical and structural brain correlates of hypomimia were studied. For this purpose, cross-sectional data from the COPPADIS study database were used. Age, disease duration, levodopa equivalent daily dose, Unified Parkinson's Disease Rating Scale part III (UPDRS-III), severity of apathy and depression and global cognitive status were collected. At the imaging level, analyses based on gray matter volume and cortical thickness were used. RESULTS: After controlling for multiple confounding variables such as age or disease duration, the severity of hypomimia was shown to be indissociable from the UPDRS-III speech and bradykinesia items and was significantly related to the severity of apathy (ß = 0.595; p < 0.0001). At the level of neural correlates, hypomimia was related to motor regions brodmann area 8 (BA 8) and to multiple fronto-temporo-parietal regions involved in the decoding, recognition and production of facial expression of emotions. CONCLUSION: Reduced facial expressivity in PD is related to the severity of symptoms of apathy and is mediated by the dysfunction of brain systems involved in motor control and in the recognition, integration and expression of emotions. Therefore, hypomimia in PD may be conceptualized not exclusively as a motor symptom but as a consequence of a multidimensional deficit leading to a symptom where motor and non-motor aspects converge.


Subject(s)
Apathy , Parkinson Disease , Humans , Cross-Sectional Studies , Hypokinesia , Brain
19.
Brain ; 144(1): 325-339, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33257949

ABSTRACT

Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer's disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer's disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer's disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer's disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (n = 1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-ß PET scan at baseline. A subset of participants (n = 864) also had measures of amyloid-ß1-42 and p-tau181 levels in CSF, and another subset (n = 298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-ß pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer's disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-ß markers reached abnormal levels, with greater rates of change correlating with increased amyloid-ß pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-ß pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-ß were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer's disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-ß, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-ß pathology and with prospective Alzheimer's disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer's disease.


Subject(s)
Alzheimer Disease/blood , tau Proteins/blood , Alzheimer Disease/diagnosis , Biomarkers/blood , Brain/diagnostic imaging , Brain/metabolism , Disease Progression , Humans , Longitudinal Studies , Phosphorylation , Positron-Emission Tomography , Prospective Studies , Threonine/blood
20.
Cereb Cortex ; 31(12): 5549-5559, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34171095

ABSTRACT

Several observations suggest an impact of prematurity on the claustrum. First, the claustrum's development appears to depend on transient subplate neurons of intra-uterine brain development, which are affected by prematurity. Second, the claustrum is the most densely connected region of the mammalian forebrain relative to its volume; due to its effect on pre-oligodendrocytes, prematurity impacts white matter connections and thereby the development of sources and targets of such connections, potentially including the claustrum. Third, due to its high connection degree, the claustrum contributes to general cognitive functioning (e.g., selective attention and task switching/maintaining); general cognitive functioning, however, is at risk in prematurity. Thus, we hypothesized altered claustrum structure after premature birth, with these alterations being associated with impaired general cognitive performance in premature born persons. Using T1-weighted and diffusion-weighted magnetic resonance imaging in 70 very preterm/very low-birth-weight (VP/VLBW) born adults and 87 term-born adults, we found specifically increased mean diffusivity in the claustrum of VP/VLBW adults, associated both with low birth weight and at-trend with reduced IQ. This result demonstrates altered claustrum microstructure after premature birth. Data suggest aberrant claustrum development, which is potentially related with aberrant subplate neuron and forebrain connection development of prematurity.


Subject(s)
Claustrum , Premature Birth , White Matter , Brain/pathology , Diffusion Magnetic Resonance Imaging , Female , Humans , Infant, Extremely Premature , Infant, Newborn , Infant, Very Low Birth Weight/physiology , Magnetic Resonance Imaging , Pregnancy , Premature Birth/pathology , White Matter/diagnostic imaging , White Matter/pathology
SELECTION OF CITATIONS
SEARCH DETAIL