Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Bioorg Chem ; 126: 105909, 2022 09.
Article in English | MEDLINE | ID: mdl-35661526

ABSTRACT

Natural polybrominated diphenyl ethers, often isolated from marine sponges, have been reported to possess various biological activities, such as antibacterial, antioxidant and antidiabetic effects. Via a high throughput screening of our marine natural product library, the polybrominated diphenyl ether 3 was found to display a KCNQ potassium channel activation effect. To obtain more compound 3 related natural products and their derivatives for further bioactivity study, a diversity-oriented synthesis was conducted, leading to the successful synthesis of five polybrominated diphenyl ether natural products (1-4, 6) and 30 new derivatives. Compound 3 was found to preferentially potentiate KCNQ1 potassium channel, whereas 17h relatively activated KCNQ2 potassium channel. The structure-activity relationship was analyzed assisted by molecular docking and 17h was further conducted for its agonistic mechanism study on KCNQ2 channel. This research work may give an insight for the discovery of marine polybrominated diphenyl ether derived new drug leads.


Subject(s)
Biological Products , Porifera , Animals , Biological Products/pharmacology , Halogenated Diphenyl Ethers/pharmacology , KCNQ Potassium Channels , Molecular Docking Simulation
2.
Molecules ; 27(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35268839

ABSTRACT

(-)-Naringenin 4',7-dimethyl ether ((-)-NRG-DM) was isolated for the first time by our lab from Nardostachys jatamansi DC, a traditional medicinal plant frequently used to attenuate pain in Asia. As a natural derivative of analgesic, the current study was designed to test the potential analgesic activity of (-)-NRG-DM and its implicated mechanism. The analgesic activity of (-)-NRG-DM was assessed in a formalin-induced mouse inflammatory pain model and mustard oil-induced mouse colorectal pain model, in which the mice were intraperitoneally administrated with vehicle or (-)-NRG-DM (30 or 50 mg/kg) (n = 10 for each group). Our data showed that (-)-NRG-DM can dose dependently (30~50 mg/kg) relieve the pain behaviors. Notably, (-)-NRG-DM did not affect motor coordination in mice evaluated by the rotarod test, in which the animals were intraperitoneally injected with vehicle or (-)-NRG-DM (100, 200, or 400 mg/kg) (n = 10 for each group). In acutely isolated mouse dorsal root ganglion neurons, (-)-NRG-DM (1~30 µM) potently dampened the stimulated firing, reduced the action potential threshold and amplitude. In addition, the neuronal delayed rectifier potassium currents (IK) and voltage-gated sodium currents (INa) were significantly suppressed. Consistently, (-)-NRG-DM dramatically inhibited heterologously expressed Kv2.1 and Nav1.8 channels which represent the major components of the endogenous IK and INa. A pharmacokinetic study revealed the plasma concentration of (-)-NRG-DM is around 7 µM, which was higher than the effective concentrations for the IK and INa. Taken together, our study showed that (-)-NRG-DM is a potential analgesic candidate with inhibition of multiple neuronal channels (mediating IK and INa).


Subject(s)
Flavanones
SELECTION OF CITATIONS
SEARCH DETAIL