ABSTRACT
The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1ß-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.
Subject(s)
Amino Acids , Microphthalmia-Associated Transcription Factor , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Amino Acids/metabolism , Nutrients , Protein Stability , Lysosomes/genetics , Lysosomes/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mammals/metabolismABSTRACT
Amino acids are essential building blocks in biology and chemistry. Whereas nature relies on a small number of amino acid structures, chemists desire access to a vast range of structurally diverse analogues1-3. The selective modification of amino acid side-chain residues represents an efficient strategy to access non-canonical derivatives of value in chemistry and biology. While semisynthetic methods leveraging the functional groups found in polar and aromatic amino acids have been extensively explored, highly selective and general approaches to transform unactivated C-H bonds in aliphatic amino acids remain less developed4,5. Here we disclose a stepwise dehydrogenative method to convert aliphatic amino acids into structurally diverse analogues. The key to the success of this approach lies in the development of a selective catalytic acceptorless dehydrogenation method driven by photochemical irradiation, which provides access to terminal alkene intermediates for downstream functionalization. Overall, this strategy enables the rapid synthesis of new amino acid building blocks and suggests possibilities for the late-stage modification of more complex oligopeptides.
Subject(s)
Amino Acids , Chemistry Techniques, Synthetic , Hydrogenation , Alkenes/chemistry , Alkenes/chemical synthesis , Amino Acids/chemistry , Amino Acids/chemical synthesis , Catalysis/radiation effects , Chemistry Techniques, Synthetic/methods , Hydrogenation/radiation effects , Oligopeptides/chemistry , Oligopeptides/chemical synthesis , Photochemical Processes/radiation effectsABSTRACT
Mechanistic target of rapamycin complex 1 (mTORC1) controls growth by regulating anabolic and catabolic processes in response to environmental cues, including nutrients1,2. Amino acids signal to mTORC1 through the Rag GTPases, which are regulated by several protein complexes, including GATOR1 and GATOR2. GATOR2, which has five components (WDR24, MIOS, WDR59, SEH1L and SEC13), is required for amino acids to activate mTORC1 and interacts with the leucine and arginine sensors SESN2 and CASTOR1, respectively3-5. Despite this central role in nutrient sensing, GATOR2 remains mysterious as its subunit stoichiometry, biochemical function and structure are unknown. Here we used cryo-electron microscopy to determine the three-dimensional structure of the human GATOR2 complex. We found that GATOR2 adopts a large (1.1 MDa), two-fold symmetric, cage-like architecture, supported by an octagonal scaffold and decorated with eight pairs of WD40 ß-propellers. The scaffold contains two WDR24, four MIOS and two WDR59 subunits circularized via two distinct types of junction involving non-catalytic RING domains and α-solenoids. Integration of SEH1L and SEC13 into the scaffold through ß-propeller blade donation stabilizes the GATOR2 complex and reveals an evolutionary relationship to the nuclear pore and membrane-coating complexes6. The scaffold orients the WD40 ß-propeller dimers, which mediate interactions with SESN2, CASTOR1 and GATOR1. Our work reveals the structure of an essential component of the nutrient-sensing machinery and provides a foundation for understanding the function of GATOR2 within the mTORC1 pathway.
Subject(s)
Amino Acids , Cryoelectron Microscopy , Multiprotein Complexes , Nutrients , Protein Subunits , Humans , Amino Acids/metabolism , Arginine , Carrier Proteins , Leucine , Mechanistic Target of Rapamycin Complex 1/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Nutrients/metabolism , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , ProteinsABSTRACT
Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple nutrients, including the essential amino acid leucine1. Recent work in cultured mammalian cells established the Sestrins as leucine-binding proteins that inhibit mTORC1 signalling during leucine deprivation2,3, but their role in the organismal response to dietary leucine remains elusive. Here we find that Sestrin-null flies (Sesn-/-) fail to inhibit mTORC1 or activate autophagy after acute leucine starvation and have impaired development and a shortened lifespan on a low-leucine diet. Knock-in flies expressing a leucine-binding-deficient Sestrin mutant (SesnL431E) have reduced, leucine-insensitive mTORC1 activity. Notably, we find that flies can discriminate between food with or without leucine, and preferentially feed and lay progeny on leucine-containing food. This preference depends on Sestrin and its capacity to bind leucine. Leucine regulates mTORC1 activity in glial cells, and knockdown of Sesn in these cells reduces the ability of flies to detect leucine-free food. Thus, nutrient sensing by mTORC1 is necessary for flies not only to adapt to, but also to detect, a diet deficient in an essential nutrient.
Subject(s)
Adaptation, Physiological , Diet , Drosophila Proteins , Drosophila melanogaster , Leucine , Sestrins , Adaptation, Physiological/genetics , Animal Feed , Animals , Autophagy , Diet/veterinary , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Food Preferences , Leucine/deficiency , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neuroglia/metabolism , Sestrins/deficiency , Sestrins/genetics , Sestrins/metabolism , Signal TransductionABSTRACT
The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates cell growth and metabolism in response to many environmental cues, including nutrients. Amino acids signal to mTORC1 by modulating the guanine nucleotide loading states of the heterodimeric Rag GTPases, which bind and recruit mTORC1 to the lysosomal surface, its site of activation. The Rag GTPases are tethered to the lysosome by the Ragulator complex and regulated by the GATOR1, GATOR2, and KICSTOR multiprotein complexes that localize to the lysosomal surface through an unknown mechanism(s). Here, we show that mTORC1 is completely insensitive to amino acids in cells lacking the Rag GTPases or the Ragulator component p18. Moreover, not only are the Rag GTPases and Ragulator required for amino acids to regulate mTORC1, they are also essential for the lysosomal recruitment of the GATOR1, GATOR2, and KICSTOR complexes, which stably associate and traffic to the lysosome as the "GATOR" supercomplex. The nucleotide state of RagA/B controls the lysosomal association of GATOR, in a fashion competitively antagonized by the N terminus of the amino acid transporter SLC38A9. Targeting of Ragulator to the surface of mitochondria is sufficient to relocalize the Rags and GATOR to this organelle, but not to enable the nutrient-regulated recruitment of mTORC1 to mitochondria. Thus, our results reveal that the Rag-Ragulator complex is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway and underscore that mTORC1 activation requires signal transduction on the lysosomal surface.
Subject(s)
Amino Acids , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins , Nutrients , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Lysosomes/metabolism , Humans , Amino Acids/metabolism , Monomeric GTP-Binding Proteins/metabolism , Nutrients/metabolism , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , HEK293 CellsABSTRACT
Since severe global warming and related climate issues have been caused by the extensive utilization of fossil fuels, the vigorous development of renewable resources is needed, and transformation into stable chemical energy is required to overcome the detriment of their fluctuations as energy sources. As an environmentally friendly and efficient energy carrier, hydrogen can be employed in various industries and produced directly by renewable energy (called green hydrogen). Nevertheless, large-scale green hydrogen production by water electrolysis is prohibited by its uncompetitive cost caused by a high specific energy demand and electricity expenses, which can be overcome by enhancing the corresponding thermodynamics and kinetics at elevated working temperatures. In the present review, the effects of temperature variation are primarily introduced from the perspective of electrolysis cells. Following an increasing order of working temperature, multidimensional evaluations considering materials and structures, performance, degradation mechanisms and mitigation strategies as well as electrolysis in stacks and systems are presented based on elevated temperature alkaline electrolysis cells and polymer electrolyte membrane electrolysis cells (ET-AECs and ET-PEMECs), elevated temperature ionic conductors (ET-ICs), protonic ceramic electrolysis cells (PCECs) and solid oxide electrolysis cells (SOECs).
ABSTRACT
Wnt/ß-catenin signaling is activated when extracellular Wnt ligands bind Frizzled (FZD) receptors at the cell membrane. Wnts bind FZD cysteine-rich domains (CRDs) with high affinity through a palmitoylated N-terminal "thumb" and a disulfide-stabilized C-terminal "index finger," yet how these binding events trigger receptor activation and intracellular signaling remains unclear. Here we report the crystal structure of the Frizzled-4 (FZD4) CRD in complex with palmitoleic acid, which reveals a CRD tetramer consisting of two cross-braced CRD dimers. Each dimer is stabilized by interactions of one hydrophobic palmitoleic acid tail with two CRD palmitoleoyl-binding grooves oriented end to end, suggesting that the Wnt palmitoleoyl group stimulates CRD-CRD interaction. Using bioluminescence resonance energy transfer (BRET) in live cells, we show that WNT5A stimulates dimerization of membrane-anchored FZD4 CRDs and oligomerization of full-length FZD4, which requires the integrity of CRD palmitoleoyl-binding residues. These results suggest that FZD receptors may form signalosomes in response to Wnt binding through the CRDs and that the Wnt palmitoleoyl group is important in promoting these interactions. These results complement our understanding of lipoprotein receptor-related proteins 5 and 6 (LRP5/6), Dishevelled, and Axin signalosome assembly and provide a more complete model for Wnt signalosome assembly both intracellularly and at the membrane.
Subject(s)
Cysteine/chemistry , Fatty Acids, Monounsaturated/chemistry , Frizzled Receptors/chemistry , Wnt-5a Protein/metabolism , Crystallography, X-Ray , Cysteine/metabolism , Fatty Acids, Monounsaturated/metabolism , Frizzled Receptors/metabolism , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolismABSTRACT
Abnormalities of regulatory T cells (Tregs) has been suggested in rheumatoid arthritis (RA), and Forkhead box P3 (Foxp3) is the key transcriptional factor of Tregs expression. However, the underlying molecular mechanism remains unclear. Here, we demonstrated peptidase inhibitor 16 (PI16) was significantly increased in the peripheral blood, synovial fluid, and synovial tissue from RA patients. PI16 transgenic mice (PI16Tg) aggravated arthritis severity partly through suppressing Foxp3 expression. Mechanistically, PI16 could interact with and stabilize Bmi-1 in Tregs via inhibiting K48-linked polyubiquitin of Bmi-1, which promotes the enrichment of repressive histone mark in Foxp3 promoter. Furthermore, Bmi-1 specific inhibitor PTC209 could restore Foxp3 expression and alleviate arthritis progression in PI16Tg mice, accompanied by increased recruitment of active histone mark in the promoter of Tregs. Our results suggest that PI16-Bmi-1 axis plays an important role in RA and other autoimmune diseases by suppressing Foxp3 expression in Tregs via Bmi-1-mediated histone modification.
Subject(s)
Arthritis, Rheumatoid , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Forkhead Transcription Factors/metabolism , Protease Inhibitors , Synovial Membrane/metabolism , UbiquitinABSTRACT
This study was conducted to compare the effectiveness of ceftriaxone with that of aqueous crystalline penicillin G in treating ocular syphilis. We conducted a retrospective study from 2010 to 2021. Syphilis patients were administered either ceftriaxone (2 g intravenously daily for 14 days) or aqueous crystalline penicillin G [4 million units (MU) intravenously every 4 h for 14 days] as therapeutic interventions. Subsequently, we utilized these two groups to assess the serological results, cerebrospinal fluid analysis, and visual acuity at time intervals spanning 3 to 6 months post-treatment. A total of 205 patients were included, with 34 assigned to the ceftriaxone group and 171 to the penicillin group. The median age of patients was 56 years, with an interquartile range of 49-62 years, and 137 of them (66.8%) were male. Between 3 and 6 months after treatment, 13 patients (38.2%) in the ceftriaxone group and 82 patients (48.0%) in the penicillin group demonstrated effective treatment based on the clinical and laboratory parameters. The crude odds ratio (OR) was 0.672 (95% confidence interval [CI]: 0.316-1.428, P = 0.301), indicating no significant difference in effectiveness between the two groups. Thirty patients (17.5%) in the penicillin group and six patients (17.6%) in the ceftriaxone group did not experience successful outcomes. Notably, no serious adverse effects were reported in both the groups. There was no significant difference in the effectiveness of ceftriaxone and aqueous crystalline penicillin G in treating ocular syphilis. The administration of ceftriaxone without requiring hospitalization presents a convenient and safe alternative treatment option for ocular syphilis.
ABSTRACT
Circulating tumor DNA (ctDNA) is a critical biomarker for early tumor detection. However, accurately quantifying low-abundance ctDNA in human serum remains a significant challenge. To address this challenge, we introduce a bimodal biosensor tailored for detecting the epidermal growth factor receptor (EGFR) mutation L858R in specific nonsmall cell lung cancer (NSCLC) patients. This biosensor utilizes dual CRISPR-Cas12a systems to quantify the target via fluorescence and electrochemical signals. In our system, the EGFR L858R exhibits resistance to digestion by the restriction enzyme MscI, which activates the first CRISPR-Cas12a protein and inhibits the binding of magnetic beads with fluorescein (FAM)-labeled hybridization chain reaction (HCR) products, thereby reducing the fluorescence signal. This activation also inhibits the cleavage activity of the second CRISPR-Cas12a protein, allowing the electrode to sustain a higher electrochemical signal from nanomaterials. The wild-type EGFR (wt EGFR) produces the opposite effect. Consequently, the concentration of EGFR L858R can be accurately quantified and verified using both fluorescence and electrochemical signals. The biosensor offers a dynamic detection ranging from 10 fM to 1 µM, with a detection limit of 372 aM. It demonstrates excellent specificity, reproducibility, stability, and recovery rates. Moreover, the sensor's enhanced analytical sensitivity highlights its critical role in biosensing applications and early disease diagnosis.
ABSTRACT
Developing lightweight composite with reversible switching between microwave (MW) absorption and electromagnetic interference (EMI) shielding is promising yet remains highly challenging due to the completely inconsistent attenuation mechanism for electromagnetic (EM) radiation. Here, a lightweight vanadium dioxide/expanded polymer microsphere composites foam (VO2/EPM) is designed and fabricated with porous structures and 3D VO2 interconnection, which possesses reversible switching function between MW absorption and EMI shielding under thermal stimulation. The VO2/EPM exhibits MW absorption with a broad effective absorption bandwidth of 3.25 GHz at room temperature (25 °C), while provides EMI shielding of 23.1 dB at moderately high temperature (100 °C). This reversible switching performance relies on the porous structure and tunability of electrical conductivity, complex permittivity, and impedance matching, which are substantially induced by the convertible crystal structure and electronic structure of VO2. Finite element simulation is employed to qualitatively investigate the change in interaction between EM waves and VO2/EPM before and after the phase transition. Moreover, the application of VO2/EPM is demonstrated with a reversible switching function in controlling wireless transmission on/off, showcasing its excellent cycling stability. This kind of smart material with a reversible switching function shows great potential in next-generation electronic devices.
ABSTRACT
OBJECTIVES: This study aimed to describe the clinical features of neurosyphilis in Chinese patients in an attempt to find clinical features that are helpful for the early identification of neurosyphilis. METHODS: This retrospective study included people with syphilis who visited Shanghai Skin Disease Hospital between January 2010 and December 2020. Lumbar puncture was performed on those who met the inclusion and exclusion criteria. The diagnosis of neurosyphilis was based on clinical and laboratory findings. The parameters were analysed statistically. RESULTS: Of the 3524 patients with neurosyphilis, 2111 (59.9%) and 1413 (40.1%) were asymptomatic and symptomatic neurosyphilis, respectively. General paresis was the most common type of symptomatic neurosyphilis (46.8%). The clinical manifestations of symptomatic neurosyphilis include psychiatric and neurotic symptoms, among which general paresis predominantly presented as psychiatric symptoms such as affective (66.7%) and memory disorder (72.9%). Tabes dorsalis is often presented as neurotic symptoms. One hundred fifty patients (10.6%) with symptomatic neurosyphilis presented candy signs, a rare and specific neurosyphilis symptom that is common in general paresis. Girdle sensation was presented in 13 patients, mainly with tabes dorsalis, which had not been reported in previous studies. CONCLUSIONS: Notably, the candy sign is identified as a specific symptom of general paresis, while girdle sensations are highlighted as a particular symptom of tabes dorsalis. This is the largest study describing the clinical spectrum of neurosyphilis since the onset of the penicillin era and could help doctors learn more about the disease. A comprehensive description of the possible clinical manifestations of late symptomatic neurosyphilis, particularly highlighting rare symptoms, can identify suspicious patients and prevent diagnostic delays.
ABSTRACT
PURPOSE: The purpose of this study is to outline a complete picture of Jarisch-Herxheimer reaction (JHR) in the central nervous system among HIV-negative neurosyphilis patients. METHODS: A prospective study cohort of 772 cases with almost all stages of neurosyphilis depicted the features of JHR including occurrence rate, risk profiles, clinical manifestations, medical management and prognosis. RESULTS: The total occurrence rate of JHR was 9.3% (95% CI, 7.3-11.4%), including 4.1% (95% CI, 2.7-5.6%) with severe JHR. The reaction started 5 h after treatment initiation, peaked after 8 h, and subsided after 18 h. Patients with severe JHR experienced a longer recovery time (26 h). Patients with general paresis (OR = 6.825), ocular syphilis (OR = 3.974), pleocytosis (OR = 2.426), or a high CSF-VDRL titre (per log2 titre increase, OR = 2.235) were more likely to experience JHR. Patients with general paresis had an 11.759-fold increased risk of severe JHR. Worsening symptoms included cognitive impairment, mania, nonsense speech, and dysphoria, while symptoms of hallucination, urination disorder, seizures, myoclonus, or aphasia appeared as new-onset symptoms. Neurosyphilis treatment did not need to be interrupted in most patients with JHR and could be reinstated in patients with seizures under supportive medication when JHR subsided. CONCLUSION: Severe JHR displayed a 4.1% occurrence rate and clinicians should pay particular attention to patients at a higher risk of JHR. The neurosyphilis treatment regime can be restarted under intensive observation for patients with severe JHR and, if necessary, supportive medication should be initiated and continued until the end of therapy.
Subject(s)
Anti-Bacterial Agents , Neurosyphilis , Humans , Neurosyphilis/drug therapy , Neurosyphilis/complications , Male , Prospective Studies , Middle Aged , Female , Adult , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Aged , Risk Factors , PrognosisABSTRACT
This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.
Subject(s)
Antioxidants , Enterococcus faecium , Swine , Animals , Antioxidants/metabolism , Bacillus subtilis/genetics , Enterococcus faecium/genetics , Muscle Fibers, Skeletal/metabolism , RNA, Messenger/metabolism , LipidsABSTRACT
The design, syntheses and antibacterial evaluation of sulfone analogues of previously disclosed metallo-ß-lactamase inhibitors (MBLis) are described. The novel derivatives were overall more effective in gram-negative bacterial cell-based assays when combined with imipenem and relebactam. The major contributors to the improved anti-bacterial activity are enhanced enzyme-inhibitor interactions and reduced bacterial cell efflux monitored via an efflux assay involving isogenic Pseudomonas aeruginosa efflux + and efflux - tool strains.
ABSTRACT
Accurately predicting neurosyphilis prior to a lumbar puncture (LP) is critical for the prompt management of neurosyphilis. However, a valid and reliable model for this purpose is still lacking. This study aimed to develop a nomogram for the accurate identification of neurosyphilis in patients with syphilis. The training cohort included 9,504 syphilis patients who underwent initial neurosyphilis evaluation between 2009 and 2020, while the validation cohort comprised 526 patients whose data were prospectively collected from January 2021 to September 2021. Neurosyphilis was observed in 35.8% (3,400/9,504) of the training cohort and 37.6% (198/526) of the validation cohort. The nomogram incorporated factors such as age, male gender, neurological and psychiatric symptoms, serum RPR, a mucous plaque of the larynx and nose, a history of other STD infections, and co-diabetes. The model exhibited good performance with concordance indexes of 0.84 (95% CI, 0.83-0.85) and 0.82 (95% CI, 0.78-0.86) in the training and validation cohorts, respectively, along with well-fitted calibration curves. This study developed a precise nomogram to predict neurosyphilis risk in syphilis patients, with potential implications for early detection prior to an LP.
Subject(s)
HIV Infections , Neurosyphilis , Syphilis , Humans , Male , Neurosyphilis/diagnosis , Neurosyphilis/epidemiology , Spinal Puncture , Risk AssessmentABSTRACT
G-protein-coupled receptors comprise the largest family of mammalian transmembrane receptors. They mediate numerous cellular pathways by coupling with downstream signalling transducers, including the hetrotrimeric G proteins Gs (stimulatory) and Gi (inhibitory) and several arrestin proteins. The structural mechanisms that define how G-protein-coupled receptors selectively couple to a specific type of G protein or arrestin remain unknown. Here, using cryo-electron microscopy, we show that the major interactions between activated rhodopsin and Gi are mediated by the C-terminal helix of the Gi α-subunit, which is wedged into the cytoplasmic cavity of the transmembrane helix bundle and directly contacts the amino terminus of helix 8 of rhodopsin. Structural comparisons of inactive, Gi-bound and arrestin-bound forms of rhodopsin with inactive and Gs-bound forms of the ß2-adrenergic receptor provide a foundation to understand the unique structural signatures that are associated with the recognition of Gs, Gi and arrestin by activated G-protein-coupled receptors.
Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Rhodopsin/metabolism , Rhodopsin/ultrastructure , Arrestin/chemistry , Arrestin/metabolism , Binding Sites , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Humans , Models, Molecular , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Rhodopsin/chemistry , Signal Transduction , Substrate SpecificityABSTRACT
In the PDF version of this Article, owing to a typesetting error, an incorrect figure was used for Extended Data Fig. 5; the correct figure was used in the HTML version. This has been corrected online.
ABSTRACT
OBJECTIVE: To explore the relationship between dietary fiber (DF) intake and hyperkalemia in maintenance hemodialysis (MHD) patients. METHODS: A total of 110 MHD patients were included, including 67 males and 43 females. Patients were divided into normal serum potassium group (N) and a hyperkalemia group (H) according to the serum potassium level before dialysis. The daily diet was recorded by the 3-day dietary recording method. The daily dietary nutrient intake of patients was analyzed. Logistic regression was used to analyze the relationship between hyperkalemia and DF intake. A receiver operating characteristic curve was used to analyze the cutoff value of DF intake to prevent hyperkalemia. RESULTS: Of the 110 patients, 38 had hyperkalemia (serum potassium >5.5 mmol/L) before dialysis. There was no difference in sex, residual kidney function, body mass index, energy intake, fat intake, protein intake, calcium intake, sodium intake, phosphorus intake or the administration history of potassium-lowering drugs between the 2 groups (P > .05). Compared with the H group, patients in the N group had higher carbohydrate intake (315 ± 76 g/d vs. 279 ± 66 g/d, P = .016), dietary fiber intake (19 ± 5 g/d vs. 12 ± 8 g/d, P < .0001), and potassium intake (1,698 ± 392 mg/d vs. 1,533 ± 413 mg/d, P = .041), and more patients in group N used renin-angiotensin-aldosterone system inhibitors (52.78% vs. 23.68%, P = .003). However, the number of patients with constipation in group N was less than that in group H (20.83% vs. 42.11%, P = .018). Logistic regression analysis showed that DF intake was an independent protective factor for hyperkalemia [P < .0001, odds ratio = 0.766 (95% confidence intervals: 0.675-0.870)]. Receiver operating characteristic analysis showed that daily intake of DF greater than 15.33 g may be helpful to prevent hyperkalemia. CONCLUSION: Insufficient dietary nutrient intake is prevalent in MHD patients, especially DF intake, which may be associated with hyperkalemia. Clinically, attention should be given to the dietary balance of MHD patients, especially DF intake.
ABSTRACT
Cadmium (Cd) exposure is considered as non-infectious stressor to human and animal health. Recent studies suggest that the immunotoxicity of low dose Cd is not directly apparent, but disrupts the immune responses when infected with some bacteria or virus. But how Cd alters the adaptive immunity organ and cells remains unclear. In this study, we applied lipopolysaccharide (LPS, infectious stressor) to induced inflammation in spleen tissues and T cells, and investigated the effects after Cd exposure and the underlying mechanism. Cd exposure promoted LPS-induced the expressions of the inflammatory factors, induced abnormal initiation of autophagy, but blocked autophagic flux. The effects Cd exposure under LPS activation were reversed by the autophagy promoter Rapamycin. Under LPS activation conditions, Cd also induced oxidative stress by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and reducing total antioxidant capacity (T-AOC) activity. The increased superoxide dismutase (SOD) activity after Cd exposure might be a negative feedback or passive adaptive regulation of oxidative stress. Cd-increased autophagic flux inhibition and TNF-α expression were reversed by ROS scavenger α-tocopherol (TCP). Furthermore, under LPS activation condition, Cd promoted activation of toll-like receptor 4 (TLR4)/IκBα/NFκ-B signaling pathway and increased TLR4 protein stability, which were abolished by the pretreatment of Rapamycin. The present study confirmed that, by increasing ROS-mediated inhibiting autophagic degradation of TLR4, Cd promoted LPS-induced inflammation in spleen T cells. This study identified the mechanism of autophagy in Cd-aggravated immunotoxicity under infectious stress, which could arouse public attention to synergistic toxicity of Cd and bacterial or virus infection.