ABSTRACT
The mitochondrial Ca2+ uniporter (MCU) plays crucial role in intramitochondrial Ca2+ uptake, allowing Ca2+-dependent activation of oxidative metabolism. In recent decades, the role of MCU pore-forming proteins has been highlighted in cancer. However, the contribution of MCU-associated regulatory proteins mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2) to pathophysiological conditions has been poorly investigated. Here, we describe the role of MICU2 in cell proliferation and invasion using in vitro and in vivo models of human colorectal cancer (CRC). Transcriptomic analysis demonstrated an increase in MICU2 expression and the MICU2/MICU1 ratio in advanced CRC and CRC-derived metastases. We report that expression of MICU2 is necessary for mitochondrial Ca2+ uptake and quality of the mitochondrial network. Our data reveal the interplay between MICU2 and MICU1 in the metabolic flexibility between anaerobic glycolysis and OXPHOS. Overall, our study sheds light on the potential role of the MICUs in diseases associated with metabolic reprogramming.
Subject(s)
Calcium-Binding Proteins , Cation Transport Proteins , Cell Proliferation , Colorectal Neoplasms , Mitochondria , Mitochondrial Membrane Transport Proteins , Up-Regulation , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Animals , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mice , Cell Proliferation/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glycolysis/genetics , Calcium/metabolism , Oxidative Phosphorylation , Female , Neoplasm Invasiveness , Metabolic Reprogramming , Calcium ChannelsABSTRACT
SK3 channels are potassium channels found to promote tumor aggressiveness. We have previously demonstrated that SK3 is regulated by synthetic ether lipids, but the role of endogenous ether lipids is unknown. Here, we have studied the role of endogenous alkyl- and alkenyl-ether lipids on SK3 channels and on the biology of cancer cells. Experiments revealed that the suppression of alkylglycerone phosphate synthase or plasmanylethanolamine desaturase 1, which are key enzymes for alkyl- and alkenyl-ether-lipid synthesis, respectively, decreased SK3 expression by increasing micro RNA (miR)-499 and miR-208 expression, leading to a decrease in SK3-dependent calcium entry, cell migration, and matrix metalloproteinase 9-dependent cell adhesion and invasion. We identified several ether lipids that promoted SK3 expression and found a differential role of alkyl- and alkenyl-ether lipids on SK3 activity. The expressions of alkylglycerone phosphate synthase, SK3, and miR were associated in clinical samples emphasizing the clinical consistency of our observations. To our knowledge, this is the first report showing that ether lipids differentially control tumor aggressiveness by regulating an ion channel. This insight provides new possibilities for therapeutic interventions, offering clinicians an opportunity to manipulate ion channel dysfunction by adjusting the composition of ether lipids.
Subject(s)
Small-Conductance Calcium-Activated Potassium Channels , Humans , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Small-Conductance Calcium-Activated Potassium Channels/genetics , Cell Movement , MicroRNAs/metabolism , MicroRNAs/genetics , Lipids/chemistry , Cell Line, Tumor , Neoplasm Invasiveness , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/geneticsABSTRACT
The intracellular Ca2+ concentration is mainly controlled by Ca2+ channels. These channels form complexes with K+ channels, which function to amplify Ca2+ flux. In cancer cells, voltage-gated/voltage-dependent Ca2+ channels and non-voltage-gated/voltage-independent Ca2+ channels have been reported to interact with K+ channels such as Ca2+-activated K+ channels and voltage-gated K+ channels. These channels are activated by an increase in cytosolic Ca2+ concentration or by membrane depolarization, which induces membrane hyperpolarization, increasing the driving force for Ca2+ flux. These complexes, composed of K+ and Ca2+ channels, are regulated by several molecules including lipids (ether lipids and cholesterol), proteins (e.g. STIM), receptors (e.g. S1R/SIGMAR1), and peptides (e.g. LL-37) and can be targeted by monoclonal antibodies, making them novel targets for cancer research.
Subject(s)
Neoplasms , Potassium Channels, Voltage-Gated , Calcium/metabolism , Calcium Channels/metabolism , Humans , Lipids , Neoplasms/drug therapy , Potassium/metabolism , Potassium Channels/metabolismABSTRACT
RATIONALE: Natural variations in the abundance of the stable isotopes of nitrogen (δ15N) and carbon (δ13C) offer valuable insights into metabolic fluxes. In the wake of strong interest in cancer metabolism, recent research has revealed δ15N and δ13C variations in cancerous compared to non-cancerous tissues and cell lines. However, our understanding of natural isotopic variations in cultured mammalian cells, particularly in relation to metabolism, remains limited. This study aims to start addressing this gap using metabolic modulations in cells cultured under controlled conditions. METHODS: Prostate cancer cells (PC3) were cultured in different conditions and their δ15N and δ13C were measured using isotope ratio mass spectrometry. Isotopic variations during successive cell culture passages were assessed and two widely used cell culture media (RPMI and DMEM) were compared. Metabolism was modulated through glutamine deprivation and hypoxia. RESULTS: Successive cell culture passages generally resulted in reproducible δ15N and δ13C values. The impact of culture medium composition on δ15N and δ13C of the cells highlights the importance of maintaining a consistent medium composition across conditions whenever possible. Glutamine deprivation and hypoxia induced a lower δ13C in bulk cell samples, with only the former affecting δ15N. Gaps between theory and experiments were bridged and the lessons learned throughout the process are provided. CONCLUSIONS: Exposing cultured cancer cells to hypoxia allowed us to further investigate the relation between metabolic modulations and natural isotopic variations, while mitigating the confounding impact of changing culture medium composition. This study highlights the potential of natural δ13C variations for studying substrate fluxes and nutrient allocation in reproducible culture conditions. Considering cell yield and culture medium composition is pivotal to the success of this approach.
Subject(s)
Carbon Isotopes , Culture Media , Mass Spectrometry , Nitrogen Isotopes , Humans , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Mass Spectrometry/methods , Culture Media/chemistry , Culture Media/metabolism , Glutamine/metabolism , Glutamine/analysis , Prostatic Neoplasms/metabolism , Male , PC-3 Cells , Cell Line, Tumor , Cell Culture Techniques/methodsABSTRACT
BACKGROUND AND AIMS: Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium-lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX. METHODS: We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC. RESULTS: In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival. CONCLUSIONS: Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.
Subject(s)
Colorectal Neoplasms , Curcumin , Microsatellite Instability , Sodium-Calcium Exchanger , Animals , Calcium/metabolism , Calcium Signaling , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Curcumin/pharmacology , Humans , Mice , Microsatellite Repeats , Mitochondrial Proteins/metabolism , Sodium-Calcium Exchanger/antagonists & inhibitorsABSTRACT
Mitochondria exert important control over plasma membrane (PM) Orai1 channels mediating store-operated Ca2+ entry (SOCE). Although the sensing of endoplasmic reticulum (ER) Ca2+ stores by STIM proteins and coupling to Orai1 channels is well understood, how mitochondria communicate with Orai1 channels to regulate SOCE activation remains elusive. Here, we reveal that SOCE is accompanied by a rise in cytosolic Na+ that is critical in activating the mitochondrial Na+/Ca2+ exchanger (NCLX) causing enhanced mitochondrial Na+ uptake and Ca2+ efflux. Omission of extracellular Na+ prevents the cytosolic Na+ rise, inhibits NCLX activity, and impairs SOCE and Orai1 channel current. We show further that SOCE activates a mitochondrial redox transient which is dependent on NCLX and is required for preventing Orai1 inactivation through oxidation of a critical cysteine (Cys195) in the third transmembrane helix of Orai1. We show that mitochondrial targeting of catalase is sufficient to rescue redox transients, SOCE, and Orai1 currents in NCLX-deficient cells. Our findings identify a hitherto unknown NCLX-mediated pathway that coordinates Na+ and Ca2+ signals to effect mitochondrial redox control over SOCE.
Subject(s)
Calcium/metabolism , Mitochondria/metabolism , ORAI1 Protein/metabolism , Sodium-Calcium Exchanger/metabolism , Sodium/metabolism , Cell Line , Humans , Mitochondrial Proteins , Oxidation-ReductionABSTRACT
The modulation of SK3 ion channels can be efficiently and selectively achieved by using the amphiphilic compound Ohmline (a glyco-glycero-ether-lipid). We report herein a series of Ohmline analogues featuring the replacement of one ether function by a thioether function located at the same position or shifted close to its initial position. The variation of the lipid chain length and the preparation of two analogues featuring either one sulfoxide or one sulfone moiety complete this series. Patch clamp measurements indicate that the presence of the thioether function (compounds 7 and 17a) produces strong activators of SK3 channels, whereas the introduction of a sulfoxide or a sulfone function at the same place produces amphiphiles devoid of an effect on SK3 channels. Compounds 7 and 17a are the first amphiphilic compounds featuring strong activation of SK3 channels (close to 200% activation). The cytosolic calcium concentration determined from fluorescence at 3 different times for compound 7b (13 min, 1 h, 24 h) revealed that the effect is different suggesting that the compound could be metabolized over time. This compound could be used as a strong SK3 activator for a short time. The capacity of 7b to activate SK3 was then used to induce vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. For the first time, we report that an amphiphilic compound can affect the endothelium dependent vasorelaxation.
Subject(s)
Ethers/pharmacology , Glycolipids/pharmacology , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Sulfhydryl Compounds/pharmacology , Surface-Active Agents/pharmacology , Animals , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Ethers/chemistry , Glycolipids/chemistry , Humans , Male , Rats , Rats, Wistar , Sulfhydryl Compounds/chemistry , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Vasodilation/drug effectsABSTRACT
Store-operated Ca2+ entry (SOCE) is a ubiquitous pathway for Ca2+ influx across the plasma membrane (PM). SOCE is mediated by the endoplasmic reticulum (ER)-associated Ca2+-sensing proteins stromal interaction molecule 1 (STIM1) and STIM2, which transition into an active conformation in response to ER Ca2+ store depletion, thereby interacting with and gating PM-associated ORAI1 channels. Although structurally homologous, STIM1 and STIM2 generate distinct Ca2+ signatures in response to varying strengths of agonist stimulation. The physiological functions of these Ca2+ signatures, particularly under native conditions, remain unclear. To investigate the structural properties distinguishing STIM1 and STIM2 activation of ORAI1 channels under native conditions, here we used CRISPR/Cas9 to generate STIM1-/-, STIM2-/-, and STIM1/2-/- knockouts in HEK293 and colorectal HCT116 cells. We show that depending on cell type, STIM2 can significantly sustain SOCE in response to maximal store depletion. Utilizing the SOCE modifier 2-aminoethoxydiphenyl borate (2-APB), we demonstrate that 2-APB-activated store-independent Ca2+ entry is mediated exclusively by endogenous STIM2. Using variants that either stabilize or disrupt intramolecular interactions of STIM C termini, we show that the increased flexibility of the STIM2 C terminus contributes to its selective store-independent activation by 2-APB. However, STIM1 variants with enhanced flexibility in the C terminus failed to support its store-independent activation. STIM1/STIM2 chimeric constructs indicated that coordination between N-terminal sensitivity and C-terminal flexibility is required for specific store-independent STIM2 activation. Our results clarify the structural determinants underlying activation of specific STIM isoforms, insights that are potentially useful for isoform-selective drug targeting.
Subject(s)
Calcium Signaling , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Stromal Interaction Molecule 2/metabolism , Boron Compounds/chemistry , Boron Compounds/pharmacology , Calcium/chemistry , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/genetics , Gene Knockdown Techniques , HCT116 Cells , HEK293 Cells , Humans , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stromal Interaction Molecule 1/chemistry , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 2/chemistry , Stromal Interaction Molecule 2/geneticsABSTRACT
Hypoxia is a well-established feature of prostate cancer (PCa) and is associated with disease aggressiveness. The hypoxic microenvironment initiates multiple adaptive responses including epithelial-to-mesenchymal transition (EMT) and a remodeling of calcium homeostasis involved in cancer progression. In the present study, we identified a new hypoxia signaling pathway with a positive feedback loop between the EMT transcription factor Zeb1 and SK3, a Ca2+-activated K+ channel, which leads to amplifying store-operated Ca2+ entry. Zeb1 and SK3 channel were strongly upregulated by hypoxia both in vitro and ex vivo in organotypic cultures of human PCa. Taking into account the sensitivity of the SK3 channel to the membrane lipid composition, we identified lipids such as Ohmline (an alkyl ether lipid and SK3 inhibitor), linoleic acid (LA) and eicosapentaenoic acid (EPA) (fatty acids associated with indolent PCa), which were able to completely abrogate the hypoxia-induced changes in Zeb1 expression. Ultimately, better understanding of this new hypoxia-induced EMT pathway may allow to develop adjuvant therapeutic strategies, in order to control PCa aggressiveness and improve treatment outcomes.
Subject(s)
Epithelial-Mesenchymal Transition , Hypoxia/physiopathology , Prostatic Neoplasms/pathology , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Tumor Microenvironment , Zinc Finger E-box-Binding Homeobox 1/metabolism , Cell Line, Tumor , Cell Movement , Eicosapentaenoic Acid/pharmacology , Glycolipids/pharmacology , Humans , Linoleic Acid/pharmacology , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitorsABSTRACT
Calcium (Ca2+) release from the endoplasmic reticulum plays an important role in many cell-fate defining cellular processes. Traditionally, this Ca2+ release was associated with the ER Ca2+ release channels, inositol 1,4,5triphosphate receptor (IP3R) and ryanodine receptor (RyR). Lately, however, other calcium conductances have been found to be intracellularly localized and to participate in cell fate regulation. Nonetheless, molecular identity and functional properties of the ER Ca2+ release mechanisms associated with multiple diseases, e.g. prostate cancer, remain unknown. Here we identify a new family of transient receptor potential melastatine 8 (TRPM8) channel isoforms as functional ER Ca2+ release channels expressed in mitochondria-associated ER membranes (MAMs). These TRPM8 isoforms exhibit an unconventional structure with 4 transmembrane domains (TMs) instead of 6 TMs characteristic of the TRP channel archetype. We show that these 4TM-TRPM8 isoforms form functional channels in the ER and participate in regulation of the steady-state Ca2+ concentration ([Ca2+]) in mitochondria and the ER. Thus, our study identifies 4TM-TRPM8 isoforms as ER Ca2+ release mechanism distinct from classical Ca2+ release channels.
Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Prostatic Neoplasms/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Aged , Alternative Splicing , Cell Line, Tumor , Epithelial Cells/cytology , Epithelial Cells/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prostate/cytology , Prostate/metabolism , Prostatic Neoplasms/genetics , Protein Domains , TRPM Cation Channels/chemistryABSTRACT
Endothelial barrier function is tightly regulated by plasma membrane receptors and is crucial for tissue fluid homeostasis; its dysfunction causes disease, including sepsis and inflammation. The ubiquitous activation of Ca2+ signaling upon phospholipase C-coupled receptor ligation leads quite naturally to the assumption that Ca2+ signaling is required for receptor-regulated endothelial barrier function. This widespread hypothesis draws analogy from smooth muscle and proposes the requirement of G protein-coupled receptor (GPCR)-generated Ca2+ signaling in activating the endothelial contractile apparatus and generating interendothelial gaps. Notwithstanding endothelia being non-excitable in nature, the hypothesis of Ca2+-induced endothelial contraction has been invoked to explain actions of GPCR agonists that either disrupt or stabilize endothelial barrier function. Here, we challenge this correlative hypothesis by showing a lack of causal link between GPCR-generated Ca2+ signaling and changes in human microvascular endothelial barrier function. We used three endogenous GPCR agonists: thrombin and histamine, which disrupt endothelial barrier function, and sphingosine-1-phosphate, which stabilizes barrier function. The qualitatively different effects of these three agonists on endothelial barrier function occur independently of Ca2+ entry through the ubiquitous store-operated Ca2+ entry channel Orai1, global Ca2+ entry across the plasma membrane, and Ca2+ release from internal stores. However, disruption of endothelial barrier function by thrombin and histamine requires the Ca2+ sensor stromal interacting molecule-1 (STIM1), whereas sphingosine-1-phosphate-mediated enhancement of endothelial barrier function occurs independently of STIM1. We conclude that although STIM1 is required for GPCR-mediated disruption of barrier function, a causal link between GPCR-induced cytoplasmic Ca2+ increases and acute changes in barrier function is missing. Thus, the cytosolic Ca2+-induced endothelial contraction is a cum hoc fallacy that should be abandoned.
Subject(s)
Calcium Signaling , Endothelial Cells/metabolism , Calcium/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cells, Cultured , Humans , Lysophospholipids/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Thrombin/genetics , Thrombin/metabolismABSTRACT
Tight control of basal cytosolic Ca2+ concentration is essential for cell survival and to fine-tune Ca2+-dependent cell functions. A way to control this basal cytosolic Ca2+ concentration is to regulate membrane Ca2+ channels including store-operated Ca2+ channels and secondary messenger-operated channels linked to G-protein-coupled or tyrosine kinase receptor activation. Orai, with or without its reticular STIM partner and Transient Receptor Potential (TRP) proteins, were considered to be the main Ca2+ channels involved. It is well accepted that, in response to cell stimulation, opening of these Ca2+ channels contributes to Ca2+ entry and the transient increase in cytosolic Ca2+ concentration involved in intracellular signaling. However, in various experimental conditions, Ca2+ entry and/or Ca2+ currents can be recorded at rest, without application of any experimental stimulation. This led to the proposition that some plasma membrane Ca2+ channels are already open/activated in basal condition, contributing therefore to constitutive Ca2+ entry. This article focuses on direct and indirect observations supporting constitutive activity of channels belonging to the Orai and TRP families and on the mechanisms underlying their basal/constitutive activities.
Subject(s)
Calcium/metabolism , Neoplasms/metabolism , Animals , Calcium Signaling , Humans , Neoplasms/pathologyABSTRACT
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Subject(s)
Antineoplastic Agents/therapeutic use , Calcium/metabolism , Gene Expression Regulation, Neoplastic , Membrane Lipids/antagonists & inhibitors , Membrane Microdomains/drug effects , Neoplasms/drug therapy , Calcium Channels/genetics , Calcium Channels/metabolism , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Chloride Channels/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Fatty Acids, Omega-3/therapeutic use , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Linoleic Acids, Conjugated/therapeutic use , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Membrane Microdomains/metabolism , Membrane Microdomains/ultrastructure , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Potassium Channels/genetics , Potassium Channels/metabolism , Signal Transduction , Tumor Cells, CulturedABSTRACT
Potassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca(2+)-activated K(+) channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca(2+) channels are divided into two main families, voltage gated/voltage dependent Ca(2+) channels and non-voltage gated/voltage independent Ca(2+) channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca(2+) channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca(2+). Non-voltage gated Ca(2+) channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca(2+) channels while non-voltage gated Ca(2+) channels are activated by Ca(2+) depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca(2+) channel families also control constitutive Ca(2+) entries. For reducing the energy consumption and for the fine regulation of Ca(2+), KCa and Ca(2+) channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa-Ca(2+) channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Eukaryotic Cells/metabolism , Potassium Channels, Calcium-Activated/metabolism , Protein Subunits/metabolism , Animals , Calcium Channels/classification , Calcium Channels/genetics , Calcium Signaling , Cell Movement , Cell Proliferation , Endoplasmic Reticulum/metabolism , Eukaryotic Cells/cytology , Gene Expression Regulation , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Organ Specificity , Potassium Channels, Calcium-Activated/classification , Potassium Channels, Calcium-Activated/genetics , Protein Subunits/classification , Protein Subunits/geneticsABSTRACT
SK3 channel mediates the migration of various cancer cells. When expressed in breast cancer cells, SK3 channel forms a complex with Orai1, a voltage-independent Ca(2+) channel. This SK3-Orai1 complex associates within lipid rafts where it controls a constitutive Ca(2+) entry leading to cancer cell migration and bone metastases development. Since cAMP was found to modulate breast cancer cell migration, we hypothesized that this could be explained by a modulation of SK3 channel activity. Herein, we study the regulation of SK3 channel by the cAMP-PKA pathway and the consequences for SK3-dependent Ca(2+) entry and cancer cell migration. We established that the beta-adrenergic receptor agonist, isoprenaline, or the direct adenylyl cyclase activator forskolin alone or in combination with the PDE4 inhibitor, CI-1044, decreased SK3 channel activity without modifying the expression of SK3 protein at the plasma membrane. Forskolin and CI-1044 reduced the SK3-dependent constitutive Ca(2+) entry and the SK3-dependent migration of MDA-MB-435s cells. PKA inhibition with KT 5720 reduced: (1) the effect of forskolin and CI-1044 by 50 % on Ca(2+) entry and (2) SK3 activity by inhibiting the serine phosphorylation of SK3. These cAMP-elevating agents displaced Orai1 protein outside lipid rafts in contrast to SK3, which remained in the lipid rafts fractions. All together, these results show that activation of the cAMP-PKA pathway decreases SK3 channel and SK3-Orai1 complex activities, leading to a decrease in both Ca(2+) entry and cancer cell migration. This work supports the potential use of cAMP-elevating agents to reduce cancer cell migration and may provide novel opportunities to address/prevent bone metastasis.
Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Cell Movement , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Adrenergic beta-Agonists/pharmacology , Azepines/pharmacology , Carbazoles/pharmacology , Cell Line, Tumor , Colforsin/pharmacology , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , HEK293 Cells , Humans , Isoproterenol/pharmacology , Membrane Microdomains/metabolism , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , ORAI1 Protein , Phosphodiesterase 4 Inhibitors/pharmacology , Protein Binding , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacologyABSTRACT
BACKGROUND AND AIMS: Bevacizumab-based chemotherapy is a recommended first-line treatment for metastatic colorectal cancer (mCRC). Robust biomarkers with clinical practice applicability have not been identified for patients with this treatment. We aimed to evaluate the prognostic yield of serum mid-infrared spectroscopy (MIRS) on patients receiving first-line bevacizumab-based chemotherapy for mCRC. METHODS: We conducted an ancillary analysis from a multicentre prospective study (NCT00489697). All baseline serums were screened by attenuated total reflection method. Principal component analysis and unsupervised k-mean partitioning methods were performed blinded to all patients' data. Endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS: From the 108 included patients, MIRS discriminated two prognostic groups. First group patients had significantly lower body mass index (p = 0.026) and albumin levels (p < 0.001), and higher levels of angiogenic markers, lactate dehydrogenase and carcinoembryonic antigen (p < 0.001). In univariate analysis, their OS and PFS were shorter with respective medians: 17.6 vs 27.9 months (p = 0.02) and 8.7 vs 11.3 months (p = 0.03). In multivariate analysis, PFS was significantly shorter (HR = 1.74, p = 0.025) with a similar trend for OS (HR = 1.69, p = 0.061). CONCLUSION: By metabolomic fingerprinting, MIRS proves to be a promising prognostic tool for patients receiving first-line bevacizumab-based chemotherapy for mCRC.
ABSTRACT
Ewing sarcoma (ES) is characterized by EWS::FLI1 or EWS::ERG fusion proteins. Knowing that ion channels are involved in tumorigenesis, this work aimed to study the involvement of the KCNN1 gene, which encodes the SK1 potassium channel, in ES development. Bioinformatics analyses from databases were used to study KCNN1 expression in patients and cell lines. Molecular approaches and in vitro assays were used to study the transcriptional regulation of KCNN1 and its involvement in the regulation of ES cell proliferation. KCNN1 is overexpressed in ES patient biopsies, and its expression is inversely correlated with patient survival. EWS::FLI1, like EWS::ERG, promotes KCNN1 and SK1 expression, binding to GGAA microsatellites near the promoter of KCNN1 isoforms. KCNN1 is involved in the regulation of ES cell proliferation, with its silencing being associated with a slowing of the cell cycle, and its expression modulates membrane potential and therefore calcium flux. These results highlight that KCNN1 is a direct target of EWS::FLI1 and EWS::ERG and demonstrate that KCNN1 is involved in the regulation of intracellular calcium activity and ES cell proliferation, making it a promising therapeutic target in ES.
ABSTRACT
The recent discoveries of the involvement of SK3 channel in some cell motility mechanisms occurring in cancer disease have opened up the way to the synthesis of inhibitors that could reduce metastasis formation. On the basis of our recent previous works showing that both lactose-glycero-ether lipid (Ohmline) and some phosphate analogues (GPGEL) were efficient compounds to modulate SK3 channel activity, the present study, which found its inspiration in the structure of the natural glycolipid DiGalactosylDiacylGlycerol (DGDG), reports the incorporation of a digalactosyl moiety (α-galactopyranosyl-(1â6)-ß-galactopyranosyl-) as the polar head of a glycero ether lipid. For the construction of the digalactosyl fragment, two synthetic approaches were compared. The standard strategy which is based on the use of the benzyl protecting group to produce 1â6 disaccharide unit, was compared with a second method that made use of the trimethylsilyl moiety as a protecting group. This second strategy, which is applied for the first time to the synthesis of (1â6)-disaccharide unit, presents a net advantage in terms of efficacy (better global yield) and cost. Finally, compound 16, which is characterized by a (1â6) DiGalactosyl unit (DG) as the polar head of the amphiphilic structure, was tested as a modulator of the SK3 channel activity. Patch-clamp experiments have shown that compound 16 reduced SK3 currents (-28.2 ± 2.0% at 5 µM) and cell migration assays performed at 300 nM have shown a reduction of cell migration (SK3 + HEK293T) by 19.6 ± 2.7%.
Subject(s)
Glycolipids/chemistry , Glycolipids/pharmacology , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Cell Movement/drug effects , HEK293 Cells , Humans , Small-Conductance Calcium-Activated Potassium Channels/metabolismABSTRACT
Ion channels are transmembrane structures that allow the passage of ions across cell membranes such as the plasma membrane or the membranes of various organelles like the nucleus, endoplasmic reticulum, Golgi apparatus or mitochondria. Aberrant expression of various ion channels has been demonstrated in several tumor cells, leading to the promotion of key functions in tumor development, such as cell proliferation, resistance to apoptosis, angiogenesis, invasion and metastasis. The link between ion channels and these key biological functions that promote tumor development has led to the classification of cancers as oncochannelopathies. Among all ion channels, the most varied and numerous, forming the largest family, are the potassium channels, with over 70 genes encoding them in humans. In this context, this review will provide a non-exhaustive overview of the role of plasma membrane potassium channels in cancer, describing 1) the nomenclature and structure of potassium channels, 2) the role of these channels in the control of biological functions that promotes tumor development such as proliferation, migration and cell death, and 3) the role of two particular classes of potassium channels, the SKCa- and Kv1- type potassium channels in cancer progression.
Subject(s)
Neoplasms , Shaker Superfamily of Potassium Channels , Humans , Neoplasms/pathology , Apoptosis , Ion Channels , Potassium ChannelsABSTRACT
Prostate cancer (PCa) represents one of the most frequent diagnosed cancer in males worldwide. Due to routine screening tests and the efficiency of available treatments, PCa-related deaths have significantly decreased over the past decades. However, PCa remains a critical threat if detected at a late stage in which, cancer cells would have already detached from the primary tumor to spread and invade other parts of the body. Calcium (Ca2+) channels and their protein regulators are now considered as hallmarks of cancer and some of them have been well examined in PCa. Among these Ca2+ channels, isoform 3 of the ORAI channel family has been shown to regulate the proliferation of PCa cells via the Arachidonic Acid-mediated Ca2+ entry, requiring the involvement of STIM1 (Stromal Interaction Molecule 1). Still, no study has yet demonstrated a role of the "neglected" STIM2 isoform in PCa or if it may interact with ORAI3 to promote an oncogenic behavior. In this study, we demonstrate that ORAI3 and STIM2 are upregulated in human PCa tissues. In old KIMAP (Knock-In Mouse Prostate Adenocarcinoma) mice, ORAI3 and STIM2 mRNA levels were significantly higher than ORAI1 and STIM1. In vitro, we show that ORAI3-STIM2 interact under basal conditions in PC-3 cells. ORAI3 silencing increased Store Operated Ca2+ Entry (SOCE) and induced a significant increase of the cell population in G2/M phase of the cell cycle, consistent with the role of ORAI3 as a negative regulator of SOCE. Higher expression levels of CDK1-Y15/Cyclin B1 were detected and mitotic arrest-related death occurred after ORAI3 silencing, which resulted in activating Bax/Bcl-2-mediated apoptotic pathway and caspase-8 activation and cleavage. STIM2 and ORAI3 expression increased in M phase while STIM1 expression and SOCE amplitude significantly decreased. Taken together, ORAI3 -STIM2 complex allows a successful progression through mitosis of PCa cells by evading mitotic catastrophe.