Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Pharmacol Res ; 201: 107087, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301816

ABSTRACT

Growing epidemiological studies highlight a bi-directional relationship between depressive symptoms and diabetes mellitus. However, the detrimental impact of their co-existence on mental health suggests the need to treat this comorbidity as a separate entity rather than the two different pathologies. Herein, we characterized the peculiar mechanisms activated in mouse hippocampus from the concurrent development of hyperglycaemia, characterizing the different diabetes subtypes, and chronic stress, recognized as a possible factor predisposing to major depression. Our work demonstrates that kynurenine overproduction, leading to apoptosis in the hippocampus, is triggered in a different way depending on hyperglycaemia or chronic stress. Indeed, in the former, kynurenine appears produced by infiltered macrophages whereas, in the latter, peripheral kynurenine preferentially promotes resident microglia activation. In this scenario, QA, derived from kynurenine catabolism, appears a key mediator causing glutamatergic synapse dysfunction and apoptosis, thus contributing to brain atrophy. We demonstrated that the coexistence of hyperglycaemia and chronic stress worsened hippocampal damage through alternative mechanisms, such as GLUT-4 and BDNF down-expression, denoting mitochondrial dysfunction and apoptosis on one hand and evoking the compromission of neurogenesis on the other. Overall, in the degeneration of neurovascular unit, hyperglycaemia and chronic stress interacted each other as the partners of a "West Coast Swing" in which the leading role can be assumed alternatively by each partner of the dance. The comprehension of these mechanisms can open novel perspectives in the management of diabetic/depressed patients, but also in the understanding the pathogenesis of other neurodegenerative disease characterized by the compromission of hippocampal function.


Subject(s)
Depressive Disorder, Major , Hyperglycemia , Neurodegenerative Diseases , Animals , Mice , Humans , Kynurenine , Hippocampus
2.
Planta Med ; 90(11): 844-857, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38925154

ABSTRACT

Prolonged exposure to lead has been recognized as harmful to human health as it may cause neurotoxic effects including mitochondrial damage, apoptosis, excitotoxicity, and myelin formation alterations, among others. Numerous data have shown that consuming olive oil and its valuable components could reduce neurotoxicity and degenerative conditions. Olive oil is traditionally obtained from olive trees; this plant (Olea europaea L.) is an evergreen fruit tree.In this manuscript, two extracts have been used and compared: the extract from the leaves of Olea europaea L. (OE) and the extract derived from OE but with a further sonication process (s-OE). Therefore, the objectives of this experimental work were as follows: 1) to generate an innovative extract; 2) to test both extracts on a model of neurotoxicity of human neurons induced following lead exposure; and 3) to study the mechanisms behind lead-induced neurotoxicity.The results showed that the mechanism involved in the neurotoxicity of lead included dysfunction of the cellular endoplasmic reticulum, which suffered oxidative damage. In addition, in all experiments, s-OE was more effective than OE, having greater and better effects against lead-induced damage and being dissolved in a smaller amount of EtOH, which promotes its sustainability.


Subject(s)
Endoplasmic Reticulum , Neurons , Olea , Plant Extracts , Olea/chemistry , Plant Extracts/pharmacology , Humans , Neurons/drug effects , Endoplasmic Reticulum/drug effects , Lead/toxicity , Plant Leaves/chemistry , Neurotoxicity Syndromes/drug therapy , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37628821

ABSTRACT

Alzheimer's disease (AD) and epilepsy are common neurological disorders in the elderly. A bi-directional link between these neurological diseases has been reported, with patients with either condition carrying almost a two-fold risk of contracting the other compared to healthy subjects. AD/epilepsy adversely affects patients' quality of life and represents a severe public health problem. Thus, identifying the relationship between epilepsy and AD represents an ongoing challenge and continuing need. Seizures in AD patients are often unrecognized because they are often nonconvulsive and sometimes mimic some behavioral symptoms of AD. Regarding this, it has been hypothesized that epileptogenesis and neurodegeneration share common underlying mechanisms. Targeted treatment to decrease epileptiform activity could represent a valuable strategy for delaying the neurodegenerative process and related cognitive impairment. Several preclinical studies have shown that some antiseizure medications (ASMs) targeting abnormal network hyperexcitability may change the natural progression of AD. However, to date, no guidelines are available for managing seizures in AD patients because of the paucity of randomized clinical trials sufficient for answering the correlated questions. Future AD clinical studies are mandatory to update clinicians about the symptomatic treatment of seizures in AD patients and recognize whether ASM therapy could change the natural progression of the disease, thereby rescuing cognitive performance.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Humans , Alzheimer Disease/drug therapy , Quality of Life , Seizures/drug therapy , Seizures/etiology , Healthy Volunteers
4.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835176

ABSTRACT

Skeletal muscle atrophy is a condition characterized by a loss of muscle mass and muscle strength caused by an imbalance between protein synthesis and protein degradation. Muscle atrophy is often associated with a loss of bone mass manifesting as osteoporosis. The aim of this study was to evaluate if chronic constriction injury (CCI) of the sciatic nerve in rats can be a valid model to study muscle atrophy and consequent osteoporosis. Body weight and body composition were assessed weekly. Magnetic resonance imaging (MRI) was performed on day zero before ligation and day 28 before sacrifice. Catabolic markers were assessed via Western blot and Quantitative Real-time PCR. After the sacrifice, a morphological analysis of the gastrocnemius muscle and Micro-Computed Tomography (Micro-CT) on the tibia bone were performed. Rats that underwent CCI had a lower body weight increase on day 28 compared to the naive group of rats (p < 0.001). Increases in lean body mass and fat mass were also significantly lower in the CCI group (p < 0.001). The weight of skeletal muscles was found to be significantly lower in the ipsilateral hindlimb compared to that of contralateral muscles; furthermore, the cross-sectional area of muscle fibers decreased significantly in the ipsilateral gastrocnemius. The CCI of the sciatic nerve induced a statistically significant increase in autophagic and UPS (Ubiquitin Proteasome System) markers and a statistically significant increase in Pax-7 (Paired Box-7) expression. Micro-CT showed a statistically significant decrease in the bone parameters of the ipsilateral tibial bone. Chronic nerve constriction appeared to be a valid model for inducing the condition of muscle atrophy, also causing changes in bone microstructure and leading to osteoporosis. Therefore, sciatic nerve constriction could be a valid approach to study muscle-bone crosstalk and to identify new strategies to prevent osteosarcopenia.


Subject(s)
Bone Diseases, Metabolic , Muscular Atrophy , Osteoporosis , Sciatic Nerve , Animals , Rats , Body Weight , Bone Diseases, Metabolic/pathology , Constriction , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Osteoporosis/pathology , Rats, Sprague-Dawley , Sciatic Nerve/injuries , X-Ray Microtomography
5.
Int J Mol Sci ; 23(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35409057

ABSTRACT

The maintenance of the physiological values of blood pressure is closely related to unchangeable factors (genetic predisposition or pathological alterations) but also to modifiable factors (dietary fat and salt, sedentary lifestyle, overweight, inappropriate combinations of drugs, alcohol abuse, smoking and use of psychogenic substances). Hypertension is usually characterized by the presence of a chronic increase in systemic blood pressure above the threshold value and is an important risk factor for cardiovascular disease, including myocardial infarction, stroke, micro- and macro-vascular diseases. Hypertension is closely related to functional changes in the endothelium, such as an altered production of vasoconstrictive and vasodilator substances, which lead to an increase in vascular resistance. These alterations make the endothelial tissue unresponsive to autocrine and paracrine stimuli, initially determining an adaptive response, which over time lead to an increase in risk or disease. The gut microbiota is composed of a highly diverse bacterial population of approximately 1014 bacteria. A balanced intestinal microbiota preserves the digestive and absorbent functions of the intestine, protecting from pathogens and toxic metabolites in the circulation and reducing the onset of various diseases. The gut microbiota has been shown to produce unique metabolites potentially important in the generation of hypertension and endothelial dysfunction. This review highlights the close connection between hypertension, endothelial dysfunction and gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Animals , Bacteria , Blood Pressure , Dysbiosis/microbiology , Humans , Hypertension/microbiology , Intestines/microbiology , Models, Animal
6.
Pharmacol Res ; 163: 105215, 2021 01.
Article in English | MEDLINE | ID: mdl-33007421

ABSTRACT

Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.


Subject(s)
Brain/metabolism , Cholesterol/metabolism , Animals , Cardiovascular Diseases/metabolism , Homeostasis , Humans , Neurodegenerative Diseases/metabolism
7.
Pharmacol Res ; 165: 105427, 2021 03.
Article in English | MEDLINE | ID: mdl-33453372

ABSTRACT

Skeletal muscles and bone tissue form the musculoskeletal apparatus, a complex system essential for the voluntary movement. The loss of muscle mass and muscle strength is often associated with a loss of bone mass, in a "hazardous duet" which implies the co-existence of sarcopenia-osteoporosis and exposes patients to a deterioration in quality of life and increased mortality. From the mechanostat theory to the recent definition of the osteosarcopenia syndrome, many aspects of muscle-bone interaction have been investigated in recent decades. The mechanical interaction is now accepted, considering the close anatomical relationship between the two tissues, however, much remains to be discovered regarding the biochemical muscle-bone interaction. Skeletal muscle has been defined as an endocrine organ capable of exerting an action on other tissues. Myokines, bioactive polypeptides released by the muscle, could represent the encrypted message in the communication between muscle and bone. These two tissues have a reciprocal influence on their metabolisms and respond in a similar way to the multiple external factors. The aim of this review is to stimulate the understanding of the encrypted language between muscle and bone, highlighting the role of catabolic pathways and oxidative stress in the musculoskeletal apparatus to elucidate the shared mechanisms and the similarity of response to the same stimuli by different tissues. Our understanding of muscle-bone interactions it could be useful to identify and develop new strategies to treat musculoskeletal diseases, together with pharmacological, nutritional and exercise-based approaches, which are already in use for the treatment of these pathologies.


Subject(s)
Bone and Bones/metabolism , Muscle, Skeletal/metabolism , Musculoskeletal Diseases/metabolism , Animals , Bone and Bones/pathology , Humans , Muscle, Skeletal/pathology , Musculoskeletal Diseases/pathology , Musculoskeletal Diseases/therapy , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoporosis/therapy , Sarcopenia/metabolism , Sarcopenia/pathology
8.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805912

ABSTRACT

The high incidence of obesity is associated with an increasing risk of several chronic diseases such as cardiovascular disease, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Sustained obesity is characterized by a chronic and unsolved inflammation of adipose tissue, which leads to a greater expression of proinflammatory adipokines, excessive lipid storage and adipogenesis. The purpose of this review is to clarify how inflammatory mediators act during adipose tissue dysfunction in the development of insulin resistance and all obesity-associated diseases. In particular, we focused our attention on the role of inflammatory signaling in brown adipose tissue (BAT) thermogenic activity and the browning of white adipose tissue (WAT), which represent a relevant component of adipose alterations during obesity. Furthermore, we reported the most recent evidence in the literature on nutraceutical supplementation in the management of the adipose inflammatory state, and in particular on their potential effect on common inflammatory mediators and pathways, responsible for WAT and BAT dysfunction. Although further research is needed to demonstrate that targeting pro-inflammatory mediators improves adipose tissue dysfunction and activates thermogenesis in BAT and WAT browning during obesity, polyphenols supplementation could represent an innovative therapeutic strategy to prevent progression of obesity and obesity-related metabolic diseases.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Dietary Supplements , Inflammation/metabolism , Obesity/metabolism , Thermogenesis , Adipogenesis , Adipose Tissue/metabolism , Animals , Curcumin/chemistry , Diet , Endoplasmic Reticulum/metabolism , Fatty Acids, Unsaturated/metabolism , Humans , Insulin Resistance , Intestines/chemistry , Lipids/chemistry , Macrophages/metabolism , Polyphenols/chemistry , Resveratrol/pharmacology , Signal Transduction
9.
Int J Mol Sci ; 21(20)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050121

ABSTRACT

Clinical management of diabetic cardiomyopathy represents an unmet need owing to insufficient knowledge about the molecular mechanisms underlying the dysfunctional heart. The aim of this work is to better clarify the role of matrix metalloproteinase 2 (MMP-2) isoforms and of translocator protein (TSPO)/voltage-dependent anion-selective channel 1 (VDAC1) modulation in the development of hyperglycaemia-induced myocardial injury. Hyperglycaemia was induced in Sprague-Dawley rats through a streptozocin injection (35 mg/Kg, i.p.). After 60 days, cardiac function was analysed by echocardiography. Nicotinamide Adenine Dinucleotide Phosphate NADPH oxidase and TSPO expression was assessed by immunohistochemistry. MMP-2 activity was detected by zymography. Superoxide anion production was estimated by MitoSOX™ staining. Voltage-dependent anion-selective channel 1 (VDAC-1), B-cell lymphoma 2 (Bcl-2), and cytochrome C expression was assessed by Western blot. Hyperglycaemic rats displayed cardiac dysfunction; this response was characterized by an overexpression of NADPH oxidase, accompanied by an increase of superoxide anion production. Under hyperglycaemia, increased expression of TSPO and VDAC1 was detected. MMP-2 downregulated activity occurred under hyperglycemia and this profile of activation was accompanied by the translocation of intracellular N-terminal truncated isoform of MMP-2 (NT-MMP-2) from mitochondria-associated membrane (MAM) into mitochondria. In the onset of diabetic cardiomyopathy, mitochondrial impairment in cardiomyocytes is characterized by the dysregulation of the different MMP-2 isoforms. This can imply the generation of a "frail" myocardial tissue unable to adapt itself to stress.


Subject(s)
Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Carrier Proteins/genetics , Disease Susceptibility , Hyperglycemia/complications , Matrix Metalloproteinase 2/metabolism , Receptors, GABA-A/genetics , Voltage-Dependent Anion Channel 1/genetics , Animals , Biomarkers , Cardiomyopathies/physiopathology , Carrier Proteins/metabolism , Isoenzymes , Models, Biological , Myocardial Contraction , NADPH Oxidases/metabolism , Protein Binding , Protein Transport , Rats , Receptors, GABA-A/metabolism , Ventricular Dysfunction/etiology , Ventricular Dysfunction/metabolism , Ventricular Dysfunction/physiopathology , Voltage-Dependent Anion Channel 1/metabolism
10.
Molecules ; 25(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297504

ABSTRACT

The employment studies of natural extracts in the prevention and treatment of several diseases highlighted the role of different species of genus Ferula L., belonging to the Apiaceae family, dicotyledonous plants present in many temperate zones of our planet. Ferula communis L. is the main source of sesquiterpene ferutinin, a bioactive compound studied both in vitro and in vivo, because of different effects, such as phytoestrogenic, antioxidant, anti-inflammatory, but also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. The present review will focus on the molecular mechanisms involved in the different activities of Ferutinin, starting from its antioxidant potential at low doses until its ionophoric property and the subsequent mitochondrial dysfunction induced through administration of high doses, which represent the key point of its anticancer action. Furthermore, we will summarize the data acquired from some experimental studies on different cell types and on several diseases. The results obtained showed an important antioxidant and phytoestrogenic regulation with lack of typical side effects related to estrogenic therapy. The preferential cell death induction for tumor cell lines suggests that ferutinin may have anti-neoplastic properties, and may be used as an antiproliferative and cytotoxic agent in an estrogen dependent and independent manner. Nevertheless, more data are needed to clearly understand the effect of ferutinin in animals before using it as a phytoestrogen or anticancer drug.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Benzoates/pharmacology , Cycloheptanes/pharmacology , Ferula/chemistry , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/therapeutic use , Apoptosis/drug effects , Benzoates/chemistry , Benzoates/therapeutic use , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/therapeutic use , Cell Line, Tumor , Cycloheptanes/chemistry , Cycloheptanes/therapeutic use , Dose-Response Relationship, Drug , Electron Transport/drug effects , Hormone Replacement Therapy , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Nitric Oxide/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytoestrogens/chemistry , Phytoestrogens/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Reactive Oxygen Species/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL