Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37606612

ABSTRACT

OBJECTIVE: A motor complete spinal cord injury (SCI) results in the loss of voluntary motor control below the point of injury. Some of these patients can regain partial motor function through inpatient rehabilitation; however, there is currently no biomarker to easily identify which patients have this potential. Evidence indicates that spasticity could be that marker. Patients with motor complete SCI who exhibit spasticity show preservation of descending motor pathways, the pathways necessary for motor signals to be carried from the brain to the target muscle. We hypothesized that the presence of spasticity predicts motor recovery after subacute motor complete SCI. METHODS: Spasticity (Modified Ashworth Scale and pendulum test) and descending connectivity (motor evoked potentials) were tested in the rectus femoris muscle in patients with subacute motor complete (n = 36) and motor incomplete (n = 30) SCI. Motor recovery was assessed by using the International Standards for Neurological Classification of Spinal Cord Injury and the American Spinal Injury Association Impairment Scale (AIS). All measurements were taken at admission and discharge from inpatient rehabilitation. RESULTS: We found that motor complete SCI patients with spasticity improved in motor scores and showed AIS conversion to either motor or sensory incomplete. Conversely, patients without spasticity showed no changes in motor scores and AIS conversion. In incomplete SCI patients, motor scores improved and AIS conversion occurred regardless of spasticity. INTERPRETATION: These findings suggest that spasticity represents an easy-to-use clinical outcome that might help to predict motor recovery after severe SCI. This knowledge can improve inpatient rehabilitation effectiveness for motor complete SCI patients. ANN NEUROL 2023.

2.
BMC Med Res Methodol ; 24(1): 5, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184529

ABSTRACT

BACKGROUND: In the last decades, medical research fields studying rare conditions such as spinal cord injury (SCI) have made extensive efforts to collect large-scale data. However, most analysis methods rely on complete data. This is particularly troublesome when studying clinical data as they are prone to missingness. Often, researchers mitigate this problem by removing patients with missing data from the analyses. Less commonly, imputation methods to infer likely values are applied. OBJECTIVE: Our objective was to study how handling missing data influences the results reported, taking the example of SCI registries. We aimed to raise awareness on the effects of missing data and provide guidelines to be applied for future research projects, in SCI research and beyond. METHODS: Using the Sygen clinical trial data (n = 797), we analyzed the impact of the type of variable in which data is missing, the pattern according to which data is missing, and the imputation strategy (e.g. mean imputation, last observation carried forward, multiple imputation). RESULTS: Our simulations show that mean imputation may lead to results strongly deviating from the underlying expected results. For repeated measures missing at late stages (> = 6 months after injury in this simulation study), carrying the last observation forward seems the preferable option for the imputation. This simulation study could show that a one-size-fit-all imputation strategy falls short in SCI data sets. CONCLUSIONS: Data-tailored imputation strategies are required (e.g., characterisation of the missingness pattern, last observation carried forward for repeated measures evolving to a plateau over time). Therefore, systematically reporting the extent, kind and decisions made regarding missing data will be essential to improve the interpretation, transparency, and reproducibility of the research presented.


Subject(s)
Biomedical Research , Spinal Cord Injuries , Humans , Reproducibility of Results , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/therapy , Computer Simulation , Rare Diseases
3.
Curr Opin Neurol ; 36(6): 507-515, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37889524

ABSTRACT

PURPOSE OF REVIEW: High-cervical spinal cord stimulation can alter cortical activity and cerebral metabolism. These effects are potentially beneficial for disorders of consciousness. A better understanding of the effects of clinical application of stimulation is needed. We aimed to evaluate the existing literature to determine the state of available knowledge. We performed a literature review of clinical studies assessing cervical spinal cord epidural stimulation for disorders of consciousness. Only peer-reviewed articles reporting preoperative and postoperative clinical status were included. RECENT FINDINGS: Nineteen studies were included. A total of 532 cases were reported, and 255 patients were considered responsive (47.9%). Considering only studies published after the definition of minimally conscious state (MCS) as an entity, 402 individuals in unresponsive wakefulness syndrome (UWS) and 113 in MCS were reported. Responsiveness to SCS was reported in 170 UWS patients (42.3%) and in 78 MCS cases (69.0%), although the criteria for responsiveness and outcome measures varied among publications. SUMMARY: Cervical SCS yielded encouraging results in patients with disorders of consciousness and seems to be more effective in MCS. More extensive investigation is needed to understand its potential role in clinical practice.


Subject(s)
Spinal Cord Stimulation , Humans , Consciousness Disorders/therapy , Persistent Vegetative State/metabolism , Wakefulness/physiology , Outcome Assessment, Health Care , Consciousness
4.
BMC Med Res Methodol ; 23(1): 100, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087419

ABSTRACT

INTRODUCTION: AO Spine RECODE-DCM was a multi-stakeholder priority setting partnership (PSP) to define the top ten research priorities for degenerative cervical myelopathy (DCM). Priorities were generated and iteratively refined using a series of surveys administered to surgeons, other healthcare professionals (oHCP) and people with DCM (PwDCM). The aim of this work was to utilise word clouds to enable the perspectives of people with the condition to be heard earlier in the PSP process than is traditionally the case. The objective was to evaluate the added value of word clouds in the process of defining research uncertainties in National Institute for Health Research (NIHR) James Lind Alliance (JLA) Priority Setting Partnerships. METHODS: Patient-generated word clouds were created for the four survey subsections of the AO Spine RECODE-DCM PSP: diagnosis, treatment, long-term management and other issues. These were then evaluated as a nested methodological study. Word-clouds were created and iteratively refined by an online support group of people with DCM, before being curated by the RECODE-DCM management committee and expert healthcare professional representatives. The final word clouds were embedded within the surveys administered at random to 50% of participants. DCM research uncertainties suggested by participants were compared pre- and post-word cloud presentation. RESULTS: A total of 215 (50.9%) participants were randomised to the word cloud stream, including 118 (55%) spinal surgeons, 52 (24%) PwDCM and 45 (21%) oHCP. Participants submitted 434 additional uncertainties after word cloud review: word count was lower and more uniform across each survey subsections compared to pre-word cloud uncertainties. Twenty-three (32%) of the final 74 PSP summary questions did not have a post-word cloud contribution and no summary question was formed exclusively on post-word cloud uncertainties. There were differences in mapping of pre- and post-word cloud uncertainties to summary questions, with greater mapping of post-word cloud uncertainties to the number 1 research question priority: raising awareness. Five of the final summary questions were more likely to map to the research uncertainties suggested by participants after having reviewed the word clouds. CONCLUSIONS: Word clouds may increase the perspective of underrepresented stakeholders in the research question gathering stage of priority setting partnerships. This may help steer the process towards research questions that are of highest priority for people with the condition.


Subject(s)
Biomedical Research , Health Priorities , Humans , Uncertainty , Health Personnel , Surveys and Questionnaires
5.
J Physiol ; 599(19): 4441-4454, 2021 10.
Article in English | MEDLINE | ID: mdl-34107068

ABSTRACT

KEY POINTS: Damage to corticospinal axons has implications for the development of spasticity following spinal cord injury (SCI). Here, we examined to what extent residual corticospinal connections and spasticity are present in muscles below the injury (quadriceps femoris and soleus) in humans with motor complete thoracic SCI. We found three distinct subgroups of people: participants with spasticity and corticospinal responses in the quadriceps femoris and soleus; participants with spasticity and corticospinal responses in the quadriceps femoris only; and participants with no spasticity or corticospinal responses in either muscle. Spasticity and corticospinal responses were present in the quadriceps but never only in the soleus muscle, suggesting a proximal to distal gradient of symptoms of hyperreflexia. These results suggest that concomitant patterns of residual corticospinal connectivity and spasticity exist in humans with motor complete SCI and that a clinical examination of spasticity might be a good predictor of residual descending motor pathways in people with severe paralysis. ABSTRACT: The loss of corticospinal axons has implications for the development of spasticity following spinal cord injury (SCI). However, the extent to which residual corticospinal connections and spasticity are present across muscles below the injury remains unknown. To address this question, we tested spasticity using the Modified Ashworth Scale and transmission in the corticospinal pathway by examining motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the leg motor cortex (cortical MEPs) and by direct activation of corticospinal axons by electrical stimulation over the thoracic spine (thoracic MEPs), in the quadriceps femoris and soleus muscles, in 30 individuals with motor complete thoracic SCI. Cortical MEPs were also conditioned by thoracic electrical stimulation at intervals allowing their summation or collision. We found three distinct subgroups of participants: 47% showed spasticity in the quadriceps femoris and soleus muscles; 30% showed spasticity in the quadriceps femoris muscle only; and 23% showed no spasticity in either muscle. Although cortical MEPs were present only in the quadriceps in participants with spasticity, thoracic MEPs were present in both muscles when spasticity was present. Thoracic electrical stimulation facilitated and suppressed cortical MEPs, showing that both forms of stimulation activated similar corticospinal axons. Cortical and thoracic MEPs correlated with the degree of spasticity in both muscles. These results provide the first evidence that related patterns of residual corticospinal connectivity and spasticity exist in muscles below the injury after motor complete thoracic SCI and highlight that a clinical examination of spasticity can predict residual corticospinal connectivity after severe paralysis.


Subject(s)
Motor Cortex , Spinal Cord Injuries , Evoked Potentials, Motor , Humans , Muscle Spasticity/etiology , Muscle, Skeletal , Pyramidal Tracts , Spinal Cord , Spinal Cord Injuries/complications , Transcranial Magnetic Stimulation
6.
Neurobiol Dis ; 155: 105385, 2021 07.
Article in English | MEDLINE | ID: mdl-33991647

ABSTRACT

Spinal cord injury (SCI) is a devastating condition characterized by loss of function, secondary to damaged spinal neurons, disrupted axonal connections, and myelin loss. Spontaneous recovery is limited, and there are no approved pharmaceutical treatments to reduce ongoing damage or promote repair. Repulsive guidance molecule A (RGMa) is upregulated following injury to the central nervous system (CNS), where it is believed to induce neuronal apoptosis and inhibit axonal growth and remyelination. We evaluated elezanumab, a human anti-RGMa monoclonal antibody, in a novel, newly characterized non-human primate (NHP) hemicompression model of thoracic SCI. Systemic intravenous (IV) administration of elezanumab over 6 months was well tolerated and associated with significant improvements in locomotor function. Treatment of animals for 16 weeks with a continuous intrathecal infusion of elezanumab below the lesion was not efficacious. IV elezanumab improved microstructural integrity of extralesional tissue as reflected by higher fractional anisotropy and magnetization transfer ratios in treated vs. untreated animals. IV elezanumab also reduced SCI-induced increases in soluble RGMa in cerebrospinal fluid, and membrane bound RGMa rostral and caudal to the lesion. Anterograde tracing of the corticospinal tract (CST) from the contralesional motor cortex following 20 weeks of IV elezanumab revealed a significant increase in the density of CST fibers emerging from the ipsilesional CST into the medial/ventral gray matter. There was a significant sprouting of serotonergic (5-HT) fibers rostral to the injury and in the ventral horn of lower thoracic regions. These data demonstrate that 6 months of intermittent IV administration of elezanumab, beginning within 24 h after a thoracic SCI, promotes neuroprotection and neuroplasticity of key descending pathways involved in locomotion. These findings emphasize the mechanisms leading to improved recovery of neuromotor functions with elezanumab in acute SCI in NHPs.


Subject(s)
Antibodies, Monoclonal/administration & dosage , GPI-Linked Proteins/antagonists & inhibitors , Nerve Tissue Proteins/antagonists & inhibitors , Neuronal Plasticity/drug effects , Neuroprotection/drug effects , Recovery of Function/drug effects , Spinal Cord Injuries/drug therapy , Amino Acid Sequence , Animals , Antibodies, Monoclonal/genetics , Chlorocebus aethiops , Exercise Test/methods , Humans , Injections, Spinal , Male , Neuronal Plasticity/physiology , Neuroprotection/physiology , Primates , Recovery of Function/physiology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae/injuries
7.
Curr Opin Neurol ; 34(6): 804-811, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34593718

ABSTRACT

PURPOSE OF REVIEW: To report progress in neuromodulation following spinal cord injury (SCI) using combined brain and spinal neuromodulation.Neuromodulation refers to alterations in neuronal activity for therapeutic purposes. Beneficial effects are established in disease states such as Parkinson's Disease (PD), chronic pain, epilepsy, and SCI. The repertoire of neuromodulation and bioelectric medicine is rapidly expanding. After SCI, cohort studies have reported the benefits of epidural stimulation (ES) combined with training. Recently, we have explored combining ES with deep brain stimulation (DBS) to increase activation of descending motor systems to address limitations of ES in severe SCI. In this review, we describe the types of applied neuromodulation that could be combined in SCI to amplify efficacy to enable movement. These include ES, mesencephalic locomotor region (MLR) - DBS, noninvasive transcutaneous stimulation, transcranial magnetic stimulation, paired-pulse paradigms, and neuromodulatory drugs. We examine immediate and longer-term effects and what is known about: (1) induced neuroplastic changes, (2) potential safety concerns; (3) relevant outcome measures; (4) optimization of stimulation; (5) therapeutic limitations and prospects to overcome these. RECENT FINDINGS: DBS of the mesencephalic locomotor region is emerging as a potential clinical target to amplify supraspinal command circuits for locomotion. SUMMARY: Combinations of neuromodulatory methods may have additive value for restoration of function after spinal cord injury.


Subject(s)
Deep Brain Stimulation , Spinal Cord Injuries , Brain , Humans , Locomotion , Neuronal Plasticity , Spinal Cord , Spinal Cord Injuries/therapy
9.
Spinal Cord ; 58(12): 1235-1248, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32939028

ABSTRACT

STUDY DESIGN: Narrative review. PURPOSE: To provide an overview of adaptive trial designs, and describe how adaptive methods can address persistent challenges encountered by randomized controlled trials of people with spinal cord injury (SCI). RESULTS: With few exceptions, adaptive methodologies have not been incorporated into clinical trial designs of people with SCI. Adaptive methods provide an opportunity to address high study costs, slow recruitment, and excessive amount of time needed to carry out the trial. The availability of existing SCI registries are well poised to support modeling and simulation, both of which are used extensively in adaptive trial designs. Eight initiatives for immediate advancement of adaptive methods in SCI were identified. CONCLUSION: Although successfully applied in other fields, adaptive clinical trial designs in SCI clinical trial programs have been narrow in scope and few in number. Immediate application of several adaptive methods offers opportunity to improve efficiency of SCI trials. Concerted effort is needed by all stakeholders to advance adaptive clinical trial design methodology in SCI.


Subject(s)
Spinal Cord Injuries , Central Nervous System , Humans , Registries , Research Design , Spinal Cord Injuries/therapy
10.
Spinal Cord ; 57(9): 753-762, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31182786

ABSTRACT

STUDY DESIGN: Retrospective, longitudinal analysis of motor and sensory outcomes following thoracic (T2-T12) sensorimotor complete spinal cord injury (SCI) in selected patients enrolled into three SCI) registries. OBJECTIVES: To establish a modern-day international benchmark for neurological recovery following traumatic complete thoracic sensorimotor SCI in a population similar to those enrolled in acute clinical trials. SETTING: Affiliates of the North American Clinical Trial Network (NACTN), European Multicenter Study about Spinal Cord Injury (EMSCI), and the Spinal Cord Injury Model Systems (SCIMS). METHODS: Only traumatic thoracic injured patients between 2006 and 2016 meeting commonly used clinical trial inclusion/exclusion criteria such as: age 16-70, T2-T12 neurological level of injury (NLI), ASIA Impairment Scale (AIS) A, non-penetrating injury, acute neurological exam within 7 days of injury, and follow-up neurological exam at least ~ 6 months post injury, were included in this analysis. International Standards for Neurological Classification of Spinal Cord injury outcomes including AIS conversion rate, NLI, and sensory and motor scores/levels were compiled. RESULTS: A total of 170 patients were included from the three registries: 12 from NACTN, 64 from EMSCI, and 94 from SCIMS. AIS conversion rates at approximately 6 months post injury varied from 16.7% to 23.4% (21.1% weighted average). Improved conversion rates were observed in all registries for low thoracic (T10-T12) injuries when compared with high/mid thoracic (T2-T9) injuries. The NLI was generally stable and lower extremity motor score (LEMS) improvement was uncommon and usually limited to low thoracic injuries only. CONCLUSIONS: This study presents the aggregation of selected multinational natural history recovery data in thoracic AIS A patients from three SCI registries and demonstrates comparable minimal improvement of ISNCSCI-scored motor and sensory function following these injuries, whereas conversions to higher AIS grades occur at a frequency of ~20%. These data inform the development of future clinical trial protocols in this important patient population for the interpretation of the safety and potential clinical benefit of new therapies, and the potential applicability in a multinational setting. SPONSORSHIP: InVivo Therapeutics.


Subject(s)
Clinical Trials as Topic/methods , Neurologic Examination/methods , Recovery of Function/physiology , Registries , Spinal Cord Injuries/diagnosis , Adolescent , Adult , Aged , Clinical Trials as Topic/standards , Female , Humans , Longitudinal Studies , Male , Middle Aged , Neurologic Examination/standards , Registries/standards , Retrospective Studies , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/physiopathology , Thoracic Vertebrae , Treatment Outcome , Young Adult
11.
Spinal Cord ; 57(5): 348-359, 2019 May.
Article in English | MEDLINE | ID: mdl-30962518

ABSTRACT

STUDY DESIGN: Narrative review by individuals experienced in the recruitment of participants to neurotherapeutic clinical trials in spinal cord injury (SCI). OBJECTIVES: To identify key problems of recruitment and explore potential approaches to overcoming them. METHODS: Published quantitative experience with recruitment of large-scale, experimental neurotherapeutic clinical studies targeting central nervous system and using primary outcome assessments validated for SCI over the last 3 decades was summarized. Based on this experience, potential approaches to improving recruitment were elicited from the authors. RESULTS: The rate of recruitment has varied between studies, depending on protocol design and other factors, but particularly inclusion/exclusion criteria. The recruitment rate also ranged over an order of magnitude between individual centers in a given study. In older multicenter studies, average recruitment rate was approximately one person per study center per month. More recent trials experienced lower rates of recruitment and potential reasons for this trend were examined. The current roles and potential of various stakeholder organizations in addressing problems of recruitment were explored. In addition, recent developments in methodology may help reduce the number of subjects required for well-powered studies. CONCLUSIONS: Several approaches are emerging to improve clinical trial design, efficacy outcome measures, and quantifiable surrogate markers, all of which should reduce the number of participants required for adequate statistical power. There is a growing sense of cooperation between various stakeholders but more should be done to bring together consumer and provider groups to improve recruitment and the effectiveness and relevance of neurotherapeutic clinical trials.


Subject(s)
Clinical Trials as Topic/methods , Patient Selection , Spinal Cord Injuries/epidemiology , Spinal Cord Injuries/therapy , Humans , Spinal Cord Injuries/diagnosis
12.
Neurosurg Focus ; 46(3): E8, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30835682

ABSTRACT

OBJECTIVEIn cell transplantation trials for spinal cord injury (SCI), quantifiable imaging criteria that serve as inclusion criteria are important in trial design. The authors' institutional experience has demonstrated an overall high rate of screen failures. The authors examined the causes for trial exclusion in a phase I, open-lab clinical trial examining the role of autologous Schwann cell intramedullary transplantation. Specifically, they reviewed the imaging characteristics in people with chronic SCI that excluded applicants from the trial, as this was a common cause of screening failures in their study.METHODSThe authors reviewed MRI records from 152 people with chronic (> 1 year) SCI who volunteered for intralesional Schwann cell transplantation but were deemed ineligible by prospectively defined criteria. Rostral-caudal injury lesion length was measured along the long axis of the spinal cord in the sagittal plane on T2-weighted MRI. Other lesion characteristics, specifically those pertaining to lesion cavity structure resulting in trial exclusion, were recorded.RESULTSImaging records from 152 potential participants with chronic SCI were reviewed, 42 with thoracic-level SCI and 110 with cervical-level SCI. Twenty-three individuals (55%) with thoracic SCI and 70 (64%) with cervical SCI were not enrolled in the trial based on imaging characteristics. For potential participants with thoracic injuries who did not meet the screening criteria for enrollment, the average rostral-caudal sagittal lesion length was 50 mm (SD 41 mm). In applicants with cervical injuries who did not meet the screening criteria for enrollment, the average sagittal lesion length was 34 mm (SD 21 mm).CONCLUSIONSWhile screening people with SCI for participation in a cell transplantation clinical trial, lesion length or volume can exclude potential subjects who appear appropriate candidates based on neurological eligibility criteria. In planning future cell-based therapy trials, the limitations incurred by lesion size should be considered early due to the screening burden and impact on candidate selection.


Subject(s)
Clinical Trials as Topic/standards , Magnetic Resonance Imaging , Neuroimaging , Patient Selection , Spinal Cord Injuries/diagnostic imaging , Adolescent , Adult , Anthropometry , Cervical Vertebrae , Female , Humans , Male , Middle Aged , Schwann Cells/transplantation , Thoracic Vertebrae , Young Adult
13.
Spinal Cord ; 56(5): 414-425, 2018 05.
Article in English | MEDLINE | ID: mdl-29284795

ABSTRACT

STUDY DESIGN: This is a focused review article. OBJECTIVES: This review presents important features of clinical outcomes assessments (COAs) in human spinal cord injury research. Considerations for COAs by trial phase and International Classification of Functioning, Disability and Health are presented as well as strengths and recommendations for upper extremity COAs for research. Clinical trial tools and designs to address recruitment challenges are identified. METHODS: The methods include a summary of topics discussed during a two-day workshop, conceptual discussion of upper extremity COAs and additional focused literature review. RESULTS: COAs must be appropriate to trial phase and particularly in mid-late-phase trials, should reflect recovery vs. compensation, as well as being clinically meaningful. The impact and extent of upper vs. lower motoneuron disease should be considered, as this may affect how an individual may respond to a given therapeutic. For trials with broad inclusion criteria, the content of COAs should cover all severities and levels of SCI. Specific measures to assess upper extremity function as well as more comprehensive COAs are under development. In addition to appropriate use of COAs, methods to increase recruitment, such as adaptive trial designs and prognostic modeling to prospectively stratify heterogeneous populations into appropriate cohorts should be considered. CONCLUSIONS: With an increasing number of clinical trials focusing on improving upper extremity function, it is essential to consider a range of factors when choosing a COA. SPONSORS: Craig H. Neilsen Foundation, Spinal Cord Outcomes Partnership Endeavor.


Subject(s)
Clinical Trials as Topic/methods , Outcome Assessment, Health Care/methods , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/therapy , Humans
14.
Glia ; 65(8): 1278-1301, 2017 08.
Article in English | MEDLINE | ID: mdl-28543541

ABSTRACT

The transplantation of rodent Schwann cells (SCs) provides anatomical and functional restitution in a variety of spinal cord injury (SCI) models, supporting the recent translation of SCs to phase 1 clinical trials for human SCI. Whereas human (Hu)SCs have been examined experimentally in a complete SCI transection paradigm, to date the reported behavior of SCs when transplanted after a clinically relevant contusive SCI has been restricted to the use of rodent SCs. Here, in a xenotransplant, contusive SCI paradigm, the survival, biodistribution, proliferation and tumorgenicity as well as host responses to HuSCs, cultured according to a protocol analogous to that developed for clinical application, were investigated. HuSCs persisted within the contused nude rat spinal cord through 6 months after transplantation (longest time examined), exhibited low cell proliferation, displayed no evidence of tumorigenicity and showed a restricted biodistribution to the lesion. Neuropathological examination of the CNS revealed no adverse effects of HuSCs. Animals exhibiting higher numbers of surviving HuSCs within the lesion showed greater volumes of preserved white matter and host rat SC and astrocyte ingress as well as axon ingrowth and myelination. These results demonstrate the safety of HuSCs when employed in a clinically relevant experimental SCI paradigm. Further, signs of a potentially positive influence of HuSC transplants on host tissue pathology were observed. These findings show that HuSCs exhibit a favorable toxicity profile for up to 6 months after transplantation into the contused rat spinal cord, an important outcome for FDA consideration of their use in human clinical trials.


Subject(s)
Nerve Regeneration/physiology , Schwann Cells/physiology , Schwann Cells/transplantation , Spinal Cord Injuries/surgery , Adult , Age Factors , Animals , Antigens, Nuclear/metabolism , Cell Cycle Proteins , Cell Proliferation/physiology , Cell Survival , Cells, Cultured , Disease Models, Animal , Female , Humans , Male , Middle Aged , Nerve Tissue Proteins/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Rats , Rats, Nude , Receptor, Nerve Growth Factor/metabolism , Spinal Cord Injuries/mortality , Sural Nerve/cytology , Time Factors , Young Adult
15.
Curr Opin Neurol ; 34(6): 781-782, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34593719
16.
Global Spine J ; 14(3_suppl): 58S-79S, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526931

ABSTRACT

STUDY DESIGN: Systematic review update. OBJECTIVES: Interventions that aim to optimize spinal cord perfusion are thought to play an important role in minimizing secondary ischemic damage and improving outcomes in patients with acute traumatic spinal cord injuries (SCIs). However, exactly how to optimize spinal cord perfusion and enhance neurologic recovery remains controversial. We performed an update of a recent systematic review (Evaniew et al, J. Neurotrauma 2020) to evaluate the effects of Mean Arterial Pressure (MAP) support or Spinal Cord Perfusion Pressure (SCPP) support on neurological recovery and rates of adverse events among patients with acute traumatic SCI. METHODS: We searched PubMed/MEDLINE, EMBASE and ClinicalTrials.gov for new published reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We implemented the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach to rate confidence in the quality of the evidence. RESULTS: From 569 potentially relevant new citations since 2019, we identified 9 new studies for inclusion, which were combined with 19 studies from a prior review to give a total of 28 studies. According to low or very low quality evidence, the effect of MAP support on neurological recovery is uncertain, and increased SCPP may be associated with improved neurological recovery. Both approaches may involve risks for specific adverse events, but the importance of these adverse events to patients remains unclear. Very low quality evidence failed to yield reliable guidance about particular monitoring techniques, perfusion ranges, pharmacological agents, or durations of treatment. CONCLUSIONS: This update provides an evidence base to support the development of a new clinical practice guideline for the hemodynamic management of patients with acute traumatic SCI. While avoidance of hypotension and maintenance of spinal cord perfusion are important principles in the management of an acute SCI, the literature does not provide high quality evidence in support of a particular protocol. Further prospective, controlled research studies with objective validated outcome assessments are required to examine interventions to optimize spinal cord perfusion in this setting.

17.
Global Spine J ; 14(5): 1664-1677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38146739

ABSTRACT

STUDY DESIGN: Literature Review. OBJECTIVE: Myelopathy affecting the thoracic spinal cord can arise secondary to several aetiologies which have similar presentation and management. Consequently, there are many uncertainties in this area, including optimal terminology and definitions. Recent collaborative cervical spinal research has led to the proposal and subsequent community adoption of the name degenerative cervical myelopathy(DCM), which has facilitated the establishment of internationally-agreed research priorities for DCM. We put forward the case for the introduction of the term degenerative thoracic myelopathy(DTM) and degenerative spinal myelopathy(DSM) as an umbrella term for both DCM and DTM. METHODS: Following PRISMA guidelines, a systematic literature search was performed to identify degenerative thoracic myelopathy literature in Embase and MEDLINE. RESULTS: Conditions encompassed within DTM include thoracic spondylotic myelopathy, ossification of the posterior longitudinal ligament, ossification of the ligamentum flavum, calcification of ligaments, hypertrophy of ligaments, degenerative disc disease, thoracic osteoarthritis, intervertebral disc herniation, and posterior osteophytosis. The classic presentation includes girdle pain, gait disturbance, leg weakness, sensory disturbance, and bladder or bowel dysfunction, often with associated back pain. Surgical management is typically favoured with post-surgical outcomes dependent on many factors, including the causative pathology, and presence of additional stenosis. CONCLUSION: The clinical entities encompassed by the term DTM are interrelated, can manifest concurrently, and present similarly. Building on the consensus adoption of DCM in the cervical spine and the recent proposal of degenerative cervical radiculopathy(DCR), extending this common nomenclature framework to the terms degenerative spinal myelopathy and degenerative thoracic myelopathy will help improve recognition and communication.

18.
Neural Regen Res ; 19(12): 2773-2784, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-38595294

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202412000-00032/figure1/v/2024-04-08T165401Z/r/image-tiff For patients with chronic spinal cord injury, the conventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection, pressure sores, osteoporosis, and deep vein thrombosis. Surgery is rarely performed on spinal cord injury in the chronic phase, and few treatments have been proven effective in chronic spinal cord injury patients. Development of effective therapies for chronic spinal cord injury patients is needed. We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal cord injury to compare intensive rehabilitation (weight-bearing walking training) alone with surgical intervention plus intensive rehabilitation. This clinical trial was registered at ClinicalTrials.gov (NCT02663310). The goal of surgical intervention was spinal cord detethering, restoration of cerebrospinal fluid flow, and elimination of residual spinal cord compression. We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement, reduced spasticity, and more rapid bowel and bladder functional recovery than weight-bearing walking training alone. Overall, the surgical procedures and intensive rehabilitation were safe. American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries. Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.

19.
Global Spine J ; 14(3_suppl): 150S-165S, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526924

ABSTRACT

STUDY DESIGN: Scoping Review. OBJECTIVE: To review the literature and summarize information on checklists and algorithms for responding to intraoperative neuromonitoring (IONM) alerts and management of intraoperative spinal cord injuries (ISCIs). METHODS: MEDLINE® was searched from inception through January 26, 2022 as were sources of grey literature. We attempted to obtain guidelines and/or consensus statements from the following sources: American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM), American Academy of Neurology (AAN), American Clinical Neurophysiology Society, NASS (North American Spine Society), and other spine surgery organizations. RESULTS: Of 16 studies reporting on management strategies for ISCIs, two were publications of consensus meetings which were conducted according to the Delphi method and eight were retrospective cohort studies. The remaining six studies were narrative reviews that proposed intraoperative checklists and management strategies for IONM alerts. Of note, 56% of included studies focused only on patients undergoing spinal deformity surgery. Intraoperative considerations and measures taken in the event of an ISCI are divided and reported in three categories of i) Anesthesiologic, ii) Neurophysiological/Technical, and iii) Surgical management strategies. CONCLUSION: There is a paucity of literature on comparative effectiveness and harms of management strategies in response to an IONM alert and possible ISCI. There is a pressing need to develop a standardized checklist and care pathway to avoid and minimize the risk of postoperative neurologic sequelae.

20.
Global Spine J ; 14(3_suppl): 38S-57S, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38526929

ABSTRACT

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVE: Surgical decompression is a cornerstone in the management of patients with traumatic spinal cord injury (SCI); however, the influence of the timing of surgery on neurological recovery after acute SCI remains controversial. This systematic review aims to summarize current evidence on the effectiveness, safety, and cost-effectiveness of early (≤24 hours) or late (>24 hours) surgery in patients with acute traumatic SCI for all levels of the spine. Furthermore, this systematic review aims to evaluate the evidence with respect to the impact of ultra-early surgery (earlier than 24 hours from injury) on these outcomes. METHODS: A systematic search of the literature was performed using the MEDLINE database (PubMed), Cochrane database, and EMBASE. Two reviewers independently screened the citations from the search to determine whether an article satisfied predefined inclusion and exclusion criteria. For all key questions, we focused on primary studies with the least potential for bias and those that controlled for baseline neurological status and specified time from injury to surgery. Risk of bias of each article was assessed using standardized tools based on study design. Finally, the overall strength of evidence for the primary outcomes was assessed using the GRADE approach. Data were synthesized both qualitatively and quantitively using meta-analyses. RESULTS: Twenty-one studies met inclusion and exclusion criteria and formed the evidence base for this review update. Seventeen studies compared outcomes between patients treated with early (≤24 hours from injury) compared to late (>24 hours) surgical decompression. An additional 4 studies evaluated even earlier time frames: <4, <5, <8 or <12 hours. Based on moderate evidence, patients were 2 times more likely to recover by ≥ 2 grades on the ASIA Impairment Score (AIS) at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, moderate evidence suggested that patients receiving early decompression had an additional 4.50 (95% CI 1.70 to 7.29) point improvement on the ASIA motor score. With respect to administrative outcomes, there was low evidence that early decompression may decrease acute hospital length of stay. In terms of safety, there was moderate evidence that suggested the rate of major complications does not differ between patients undergoing early compared to late surgery. Furthermore, there was no difference in rates of mortality, surgical device-related complications, sepsis/systemic infection or neurological deterioration based on timing of surgery. Firm conclusions were not possible with respect to the impact of ultra-early surgery on neurological, functional or safety outcomes given the poor-quality studies, imprecision and the overlap in the time frames examined. CONCLUSIONS: This review provides an evidence base to support the update on clinical practice guidelines related to the timing of surgical decompression in acute SCI. Overall, the strength of evidence was moderate that early surgery (≤24 hours from injury) compared to late (>24 hours) results in clinically meaningful improvements in neurological recovery. Further studies are required to delineate the role of ultra-early surgery in patients with acute SCI.

SELECTION OF CITATIONS
SEARCH DETAIL