Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Virol ; 94(17)2020 08 17.
Article in English | MEDLINE | ID: mdl-32581097

ABSTRACT

The envelope glycoprotein I (gI) of herpes simplex virus 1 (HSV-1) is a critical mediator of virus-induced cell-to-cell spread and cell-cell fusion. Here, we report a previously unrecognized property of this molecule. In transfected cells, the HSV-1 gI was discovered to induce rod-shaped structures that were uniform in width but variable in length. Moreover, the gI within these structures was conformationally different from the typical form of gI, as a previously used monoclonal antibody mAb3104 and a newly made peptide antibody to the gI extracellular domain (ECD) (amino acids [aa] 110 to 202) both failed to stain the long rod-shaped structures, suggesting the formation of a higher-order form. Consistent with this observation, we found that gI could self-interact and that the rod-shaped structures failed to recognize glycoprotein E, the well-known binding partner of gI. Further analyses by deletion mutagenesis and construction of chimeric mutants between gI and gD revealed that the gI ECD is the critical determinant, whereas the transmembrane domain served merely as an anchor. The critical amino acids were subsequently mapped to proline residues 184 and 188 within a conserved PXXXP motif. Reverse genetics analyses showed that the ability to induce a rod-shaped structure was not required for viral replication and spread in cell culture but rather correlated positively with the capability of the virus to induce cell fusion in the UL24syn background. Together, this work discovered a novel feature of HSV-1 gI that may have important implications in understanding gI function in viral spread and pathogenesis.IMPORTANCE The HSV-1 gI is required for viral cell-to-cell spread within the host, but the molecular mechanisms of how gI exactly works have remained poorly understood. Here, we report a novel property of this molecule, namely, induction of rod-shaped structures, which appeared to represent a higher-order form of gI. We further mapped the critical residues and showed that the ability of gI to induce rod-shaped structures correlated well with the capability of HSV-1 to induce cell fusion in the UL24syn background, suggesting that the two events may have an intrinsic link. Our results shed light on the biological properties of HSV-1 gI and may have important implications in understanding viral pathogenesis.


Subject(s)
Glycoproteins/metabolism , Glycoproteins/ultrastructure , Herpesvirus 1, Human/metabolism , Simplexvirus/metabolism , Animals , Antibodies, Monoclonal , Cell Communication , Cell Fusion , Cell Line , Chlorocebus aethiops , Glycoproteins/genetics , Mutation , Simplexvirus/genetics , Vero Cells , Virus Replication
2.
Microbiol Spectr ; 10(2): e0265921, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35348373

ABSTRACT

The 380-to-393-amino-acid glycoprotein I (gI) encoded by herpes simplex virus 1 (HSV-1) is a critical mediator for viral cell-to-cell spread and syncytium formation. Here we report a previously unrecognized aberrant form of gI in HSV-1-infected cells. Production of this molecule is independent of cell type and viral strains. It had an unexpected gel migration size of approximately 23 kDa, was packaged into viral particles, and could be coimmunoprecipitated by antibodies to both N and C termini of gI. Deep sequencing failed to detect alternative RNA splicing, and the invitro transcribed full-length mRNA gave rise to the 23 kDa protein in transfected cells. Combined mass spectrometry and antibody probing analyses detected peptide information across different regions of gI, suggesting the possibility of a full-length gI but with abnormal migration behavior. In line with this notion, the HA insertion mutagenesis revealed a stable fold in the gI extracellular region aa.38-196 resistant to denaturing conditions, whereas small deletions within this region failed the antibodies to detect the fast, but not the slow-moving species of gI. It is also intriguing that the structure could be perturbed to some extent by a gBsyn mutation, leading to exposure or shielding of the gI epitopes. Thus, the HSV-1 gI apparently adopts a very stable fold in its natural form, rendering it an unusual biophysical property. Our findings provide novel insight into the biological properties of HSV gI and have important implications in understanding the viral spread and pathogenesis. IMPORTANCE The HSV-1 gI is required for viral cell-to-cell spread within the host, but its behavior during infection has remained poorly defined. Along with the classic 66 kDa product, here we report a previously unrecognized, approximately 23 kDa form of gI. Biochemical and genetics analyses revealed that this molecule represents the full-length form of gI but adopts a stable fold in its extracellular domain that is resistant to denatured conditions, thus contributing to the aberrant migration rate. Our results revealed a novel property of HSV-1 gI and have important implications in understanding viral pathogenesis.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Cell Culture Techniques , Cell Line , Glycoproteins , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/metabolism , Humans , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL