Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Malar J ; 11: 358, 2012 Oct 29.
Article in English | MEDLINE | ID: mdl-23107112

ABSTRACT

BACKGROUND: Indoor residual spraying (IRS) is a primary method of malaria vector control, but its potential impact is constrained by several inherent limitations: spraying must be repeated when insecticide residues decay, householders can tire of the annual imposition and campaign costs are recurrent. Durable lining (DL) can be considered an advanced form of long-lasting IRS where insecticide is gradually released from an aesthetically attractive wall lining material to provide vector control for several years. A multicentre trial was carried out in Equatorial Guinea, Ghana, Mali, South Africa and Vietnam to assess the feasibility, durability, bioefficacy and household acceptability of DL, compared to conventional IRS or insecticide-treated curtains (LLITCs), in a variety of operational settings. METHODS: This study was conducted in 220 households in traditional rural villages over 12-15 months. In all sites, rolls of DL were cut to fit house dimensions and fixed to interior wall surfaces (usually with nails and caps) by trained teams. Acceptability was assessed using a standardized questionnaire covering such topics as installation, exposure reactions, entomology, indoor environment, aesthetics and durability. Bioefficacy of interventions was evaluated using WHO cone bioassay tests at regular intervals throughout the year. RESULTS: The deltamethrin DL demonstrated little to no decline in bioefficacy over 12-15 months, supported by minimal loss of insecticide content. By contrast, IRS displayed a significant decrease in bioactivity by 6 months and full loss after 12 months. The majority of participants in DL households perceived reductions in mosquito density (93%) and biting (82%), but no changes in indoor temperature (83%). Among those households that wanted to retain the DL, 73% cited protective reasons, 20% expressed a desire to keep theirs for decoration and 7% valued both qualities equally. In Equatorial Guinea, when offered a choice of vector control product at the end of the trial (DL, IRS or LLITCs), DL consistently emerged as the most popular intervention regardless of the earlier household allocation. CONCLUSIONS: Just as long-lasting insecticidal nets overcame several of the technical and logistical constraints associated with conventionally treated nets and then went to scale, this study demonstrates the potential of DL to sustain user compliance and overcome the operational challenges associated with IRS.


Subject(s)
Housing , Insecticides/administration & dosage , Malaria/prevention & control , Mosquito Control/methods , Textiles , Africa , Animals , Asia, Southeastern , Delayed-Action Preparations , Humans , Insecticides/adverse effects , Nitriles/administration & dosage , Nitriles/adverse effects , Patient Acceptance of Health Care , Pyrethrins/administration & dosage , Pyrethrins/adverse effects , Rural Population , Textiles/analysis
2.
Parasit Vectors ; 14(1): 82, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509273

ABSTRACT

BACKGROUND: Since the late 1990s, malaria control programmes have relied extensively on mass bednet distribution and indoor residual spraying. Both interventions use pesticides and target mosquitoes coming indoors either to feed or to rest. Unfortunately, these intensified vector control campaigns have resulted in mosquito populations with high levels of resistance to most of the chemical compounds used against them and which are increasingly exophagic and exophillic, hence difficult to monitor indoors. Consequently, there is an urgent need for novel tools to sample outdoor anopheline populations for monitoring interventions and disease surveillance programmes. METHODOLOGIES: In this study, we tested several modifications and configurations of the BioGents® Sentinel (BGS) trap, designed with the aim to increase its efficacy for sampling malaria vector species. Traps were used with chemical attractants and CO2, and the impacts of trap position, trap colour contrast combination and the addition of a heat source were tested in two studies conducted in the Sudano-Sahelian region of Burkina Faso and Mali. RESULTS: The results show that of all the configurations tested, the addition of a heat source to the BGS trap with the original colour combination and an upward positioning resulted in a 1.8- and 5.9-fold increase in host-seeking Anopheles gambiae (s.l.) females in the experiments performed in Burkina Faso and Mali, respectively. BGS with heat traps, referred to as BGSH traps, captured An. gambiae (s.l.), An. pharoensis, An. coustani, Culex and Mansonia spp. Importantly, the results suggest that their efficacy does not depend on the close proximity of nearby hosts in houses. CONCLUSIONS: The results suggest that BGSH traps can be an effective scalable tool for sampling outdoor anopheline vector populations. Further developments enabling CO2 and heat generation for longer periods of time would further improve the trap's versatility for large-scale surveillance programmes.


Subject(s)
Anopheles , Mosquito Control/methods , Animals , Anopheles/physiology , Behavior, Animal , Burkina Faso , Disease Vectors , Hot Temperature , Insect Bites and Stings , Malaria/transmission , Mali , Mosquito Vectors/physiology , Odorants
3.
Malar J ; 9: 243, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20796288

ABSTRACT

BACKGROUND: Whether Plasmodium falciparum, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics. METHODS: In natural mosquito populations, Plasmodium fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed Anopheles gambiae s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis. RESULTS: Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of Anopheles gambiae. CONCLUSIONS: Because these results suggest that infected mosquitoes may incur fitness costs under natural-like conditions, they are particularly relevant to vector control strategies aiming at boosting naturally occurring refractoriness or spreading natural or foreign genes for refractoriness using genetic drive systems in vector populations.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Disease Vectors , Plasmodium falciparum/pathogenicity , Animals , Body Size , Female , Mali , Plasmodium falciparum/growth & development , Survival Analysis
5.
Parasit Vectors ; 11(Suppl 2): 654, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30583720

ABSTRACT

Major efforts are currently underway to develop novel, complementary methods to combat mosquito-borne diseases. Mosquito genetic control strategies (GCSs) have become an increasingly important area of research on account of their species-specificity, track record in targeting agricultural insect pests, and their environmentally non-polluting nature. A number of programs targeting Aedes and Anopheles mosquitoes, vectors of human arboviruses and malaria respectively, are currently being developed or deployed in many parts of the world. Operationally implementing these technologies on a large scale however, beyond proof-of-concept pilot programs, is hampered by the absence of adequate sex separation methods. Sex separation eliminates females in the laboratory from male mosquitoes prior to release. Despite the need for sex separation for the control of mosquitoes, there have been limited efforts in recent years in developing systems that are fit-for-purpose. In this special issue of Parasites and Vectors we report on the progress of the global Coordinated Research Program on "Exploring genetic, molecular, mechanical and behavioural methods for sex separation in mosquitoes" that is led by the Insect Pest Control Subprogramme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture with the specific aim of building efficient sex separation systems for mosquito species. In an effort to overcome current barriers we briefly highlight what we believe are the three main reasons why progress has been so slow in developing appropriate sex separation systems: the availability of methods that are not scalable, the difficulty of building the ideal genetic systems and, finally, the lack of research efforts in this area.


Subject(s)
Aedes/genetics , Anopheles/genetics , Malaria/prevention & control , Mosquito Control , Mosquito Vectors/genetics , Aedes/physiology , Animals , Anopheles/physiology , Female , Gene Drive Technology , Humans , Infertility , Malaria/transmission , Male , Mosquito Vectors/physiology , Sex Determination Analysis
6.
Acta Trop ; 122(1): 87-93, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22198241

ABSTRACT

Malaria parasites stages prior to sporozoite formation are known to affect the fecundity of several species of mosquitoes in the laboratory, but little is known about this phenomenon in natural conditions especially with sporozoite-infected anophelines. The reproductive success of wild-caught Anopheles arabiensis and the M and S molecular forms of Anopheles gambiae was investigated by comparing females infected with Plasmodium falciparum sporozoites to females free of sporozoites. Association between sporozoite-infected females' body size and their egg batch size was also measured. There was no significant reduction in egg production due to sporozoite infection among wild females An. arabiensis and the M and S form of An. gambiae. The infected groups and the controls laid similar numbers of eggs. A positive association was found between body size of females infected with P. falciparum and mean egg production. Infected females of the molecular forms of An. gambiae and their sibling species An. arabiensis invest similarly in egg batch size regardless of their body size although the expected egg batch size may differ among them because of differences in their mean body size. A reduction of egg production related to infection status was not observed among females harboring sporozoites. Therefore for the gonotrophic cycles that occur once sporozoites are present, natural infection of all three vectors we studied has no or minimal effect on their densities or their reproductive outputs.


Subject(s)
Anopheles/physiology , Anopheles/parasitology , Plasmodium falciparum/growth & development , Sporozoites/growth & development , Animals , Anopheles/genetics , Body Size , Female , Fertility , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL