Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Neurooncol ; 156(3): 645-653, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35043276

ABSTRACT

PURPOSE: Tumor-associated macrophages (TAMs) are a key component of glioblastoma (GBM) microenvironment. Considering the differential role of different TAM phenotypes in iron metabolism with the M1 phenotype storing intracellular iron, and M2 phenotype releasing iron in the tumor microenvironment, we investigated MRI to quantify iron as an imaging biomarker for TAMs in GBM patients. METHODS: 21 adult patients with GBM underwent a 3D single echo gradient echo MRI sequence and quantitative susceptibility maps were generated. In 3 subjects, ex vivo imaging of surgical specimens was performed on a 9.4 Tesla MRI using 3D multi-echo GRE scans, and R2* (1/T2*) maps were generated. Each specimen was stained with hematoxylin and eosin, as well as CD68, CD86, CD206, and L-Ferritin. RESULTS: Significant positive correlation was observed between mean susceptibility for the tumor enhancing zone and the L-ferritin positivity percent (r = 0.56, p = 0.018) and the combination of tumor's enhancing zone and necrotic core and the L-Ferritin positivity percent (r = 0.72; p = 0.001). The mean susceptibility significantly correlated with positivity percent for CD68 (ρ = 0.52, p = 0.034) and CD86 (r = 0.7 p = 0.001), but not for CD206 (ρ = 0.09; p = 0.7). There was a positive correlation between mean R2* values and CD68 positive cell counts (r = 0.6, p = 0.016). Similarly, mean R2* values significantly correlated with CD86 (r = 0.54, p = 0.03) but not with CD206 (r = 0.15, p = 0.5). CONCLUSIONS: This study demonstrated the potential of MR quantitative susceptibility mapping as a non-invasive method for in vivo TAM quantification and phenotyping. Validation of these findings with large multicenter studies is needed.


Subject(s)
Brain Neoplasms , Glioblastoma , Magnetic Resonance Imaging , Tumor-Associated Macrophages , Adult , Apoferritins/metabolism , Biomarkers/metabolism , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Humans , Iron/metabolism , Magnetic Resonance Imaging/methods , Reproducibility of Results
2.
J Magn Reson Imaging ; 52(3): 823-835, 2020 09.
Article in English | MEDLINE | ID: mdl-32128914

ABSTRACT

BACKGROUND: Quantitative susceptibility mapping (QSM) uses prior information to reconstruct maps, but prior information may not show pathology and introduce inconsistencies with susceptibility maps, degrade image quality and inadvertently smoothing image features. PURPOSE: To develop a local field data-driven QSM reconstruction that does not depend on spatial edge prior information. STUDY TYPE: Retrospective. SUBJECTS, ANIMAL MODELS: A dataset from 2016 ISMRM QSM Challenge, 11 patients with glioblastoma, a patient with microbleeds and porcine heart. SEQUENCE/FIELD STRENGTH: 3D gradient echo sequence on 3T and 7T scanners. ASSESSMENT: Accuracy was compared to Calculation of Susceptibility through Multiple Orientation Sampling (COSMOS), and several published techniques using region of interest (ROI) measurements, root-mean-squared error (RMSE), structural similarity index metric (SSIM), and high-frequency error norm (HFEN). Numerical ranking and semiquantitative image grading was performed by three expert observers to assess overall image quality (IQ) and image sharpness (IS). STATISTICAL TESTS: Bland-Altman, Friedman test, and Conover multiple comparisons. RESULTS: Loss adaptive dipole inversion (LADI) (ß = 0.82, R2 = 0.96), morphology-enabled dipole inversion (MEDI) (ß = 0.91, R2 = 0.97), and fast nonlinear susceptibility inversion (FANSI) (ß = 0.81, R2 = 0.98) had excellent correlation with COSMOS and no bias was detected (bias = 0.006 ± 0.014, P < 0.05). In glioblastoma patients, LADI showed consistently better performance (IQGrade = 2.6 ± 0.4, ISGrade = 2.6 ± 0.3, IQRank = 3.5 ± 0.4, ISRank = 3.9 ± 0.2) compared with MEDI (IQGrade = 2.1 ± 0.3, ISGrade = 2 ± 0.5, IQRank = 2.4 ± 0.5, ISRank = 2.8 ± 0.2) and FANSI (IQGrade = 2.2 ± 0.5, ISGrade = 2 ± 0.4, IQRank = 2.8 ± 0.3, ISRank = 2.1 ± 0.2). Dark artifact visible near the infarcted region in MEDI (InfMEDI = -0.27 ± 0.06 ppm) was better mitigated by FANSI (InfFANSI-TGV = -0.17 ± 0.05 ppm) and LADI (InfLADI = -0.18 ± 0.05 ppm). CONCLUSION: For neuroimaging applications, LADI preserved image sharpness and fine features in glioblastoma and microbleed patients. LADI performed better at mitigating artifacts in cardiac QSM. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:823-835.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Algorithms , Animals , Brain/diagnostic imaging , Brain Mapping , Humans , Retrospective Studies , Swine
3.
Sci Rep ; 11(1): 15011, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34294864

ABSTRACT

Glioblastoma (GBM) has high metabolic demands, which can lead to acidification of the tumor microenvironment. We hypothesize that a machine learning model built on temporal principal component analysis (PCA) of dynamic susceptibility contrast-enhanced (DSC) perfusion MRI can be used to estimate tumor acidity in GBM, as estimated by pH-sensitive amine chemical exchange saturation transfer echo-planar imaging (CEST-EPI). We analyzed 78 MRI scans in 32 treatment naïve and post-treatment GBM patients. All patients were imaged with DSC-MRI, and pH-weighting that was quantified from CEST-EPI estimation of the magnetization transfer ratio asymmetry (MTRasym) at 3 ppm. Enhancing tumor (ET), non-enhancing core (NC), and peritumoral T2 hyperintensity (namely, edema, ED) were used to extract principal components (PCs) and to build support vector machines regression (SVR) models to predict MTRasym values using PCs. Our predicted map correlated with MTRasym values with Spearman's r equal to 0.66, 0.47, 0.67, 0.71, in NC, ET, ED, and overall, respectively (p < 0.006). The results of this study demonstrates that PCA analysis of DSC imaging data can provide information about tumor pH in GBM patients, with the strongest association within the peritumoral regions.


Subject(s)
Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Tumor Microenvironment , Aged , Animals , Data Interpretation, Statistical , Disease Models, Animal , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/standards , Male , Mice , Middle Aged , Neoplasm Grading , Neoplasm Staging , Principal Component Analysis
4.
Neurooncol Adv ; 2(1): vdaa016, 2020.
Article in English | MEDLINE | ID: mdl-32140683

ABSTRACT

BACKGROUND: Plasma cell-free DNA (cfDNA) concentration is lower in glioblastoma (GBM) compared to other solid tumors, which can lead to low circulating tumor DNA (ctDNA) detection. In this study, we investigated the relationship between multimodality magnetic resonance imaging (MRI) and histopathologic features with plasma cfDNA concentration and ctDNA detection in patients with treatment-naive GBM. METHODS: We analyzed plasma cfDNA concentration, MRI scans, and tumor histopathology from 42 adult patients with newly diagnosed GBM. Linear regression analysis was used to examine the relationship of plasma cfDNA concentration before surgery to imaging and histopathologic characteristics. In a subset of patients, imaging and histopathologic metrics were also compared between patients with and without a detected tumor somatic mutation. RESULTS: Tumor volume with elevated (>1.5 times contralateral white matter) rate transfer constant (K ep, a surrogate of blood-brain barrier [BBB] permeability) was independently associated with plasma cfDNA concentration (P = .001). Histopathologic characteristics independently associated with plasma cfDNA concentration included CD68+ macrophage density (P = .01) and size of tumor vessels (P = .01). Patients with higher (grade ≥3) perivascular CD68+ macrophage density had lower volume transfer constant (K trans, P = .01) compared to those with lower perivascular CD68+ macrophage density. Detection of at least 1 somatic mutation in plasma cfDNA was associated with significantly lower perivascular CD68+ macrophages (P = .01). CONCLUSIONS: Metrics of BBB disruption and quantity and distribution of tumor-associated macrophages are associated with plasma cfDNA concentration and ctDNA detection in GBM patients. These findings represent an important step in understanding the factors that determine plasma cfDNA concentration and ctDNA detection.

5.
Clin Cancer Res ; 26(2): 397-407, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31666247

ABSTRACT

PURPOSE: The clinical utility of plasma cell-free DNA (cfDNA) has not been assessed prospectively in patients with glioblastoma (GBM). We aimed to determine the prognostic impact of plasma cfDNA in GBM, as well as its role as a surrogate of tumor burden and substrate for next-generation sequencing (NGS). EXPERIMENTAL DESIGN: We conducted a prospective cohort study of 42 patients with newly diagnosed GBM. Plasma cfDNA was quantified at baseline prior to initial tumor resection and longitudinally during chemoradiotherapy. Plasma cfDNA was assessed for its association with progression-free survival (PFS) and overall survival (OS), correlated with radiographic tumor burden, and subjected to a targeted NGS panel. RESULTS: Prior to initial surgery, GBM patients had higher plasma cfDNA concentration than age-matched healthy controls (mean 13.4 vs. 6.7 ng/mL, P < 0.001). Plasma cfDNA concentration was correlated with radiographic tumor burden on patients' first post-radiation magnetic resonance imaging scan (ρ = 0.77, P = 0.003) and tended to rise prior to or concurrently with radiographic tumor progression. Preoperative plasma cfDNA concentration above the mean (>13.4 ng/mL) was associated with inferior PFS (median 4.9 vs. 9.5 months, P = 0.038). Detection of ≥1 somatic mutation in plasma cfDNA occurred in 55% of patients and was associated with nonstatistically significant decreases in PFS (median 6.0 vs. 8.7 months, P = 0.093) and OS (median 5.5 vs. 9.2 months, P = 0.053). CONCLUSIONS: Plasma cfDNA may be an effective prognostic tool and surrogate of tumor burden in newly diagnosed GBM. Detection of somatic alterations in plasma is feasible when samples are obtained prior to initial surgical resection.


Subject(s)
Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Glioblastoma/diagnosis , Magnetic Resonance Imaging/methods , Mutation , Adult , Aged , Aged, 80 and over , Female , Glioblastoma/blood , Glioblastoma/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Longitudinal Studies , Male , Middle Aged , Pilot Projects , Prognosis , Prospective Studies , Survival Rate , Tumor Burden , Young Adult
6.
Laryngoscope ; 129(7): 1627-1633, 2019 07.
Article in English | MEDLINE | ID: mdl-30582159

ABSTRACT

OBJECTIVE: Spasmodic dysphonia (SD) is a neurological disorder characterized by involuntary spasms in the laryngeal muscles. It is thought to selectively affect speaking; other vocal behaviors remain intact. However, the patients' own perspective on their symptoms is largely missing, leading to partial understanding of the full spectrum of voice alterations in SD. METHODS: A cohort of 178 SD patients rated their symptoms on the visual analog scale based on the level of effort required for speaking, singing, shouting, whispering, crying, laughing, and yawning. Statistical differences between the effort for speaking and the effort for other vocal behaviors were assessed using nonparametric Wilcoxon rank-sum tests within the overall SD cohort as well as within different subgroups of SD. RESULTS: Speech production was found to be the most impaired behavior, ranking as the most effortful type of voice production in all SD patients. In addition, singing required nearly similar effort as speaking, ranking as the second most altered vocal behavior. Shouting showed a range of variability in its alterations, being especially difficult to produce for patients with adductor form, co-occurring voice tremor, late onset of disorder, and familial history of dystonia. Other vocal behaviors, such as crying, laughing, whispering, and yawning, were within the normal ranges across all SD patients. CONCLUSION: Our findings widen the symptomatology of SD, which has predominantly been focused on selective speech impairments. We suggest that a separation of SD symptoms is rooted in selective aberrations of the neural circuitry controlling learned but not innate vocal behaviors. LEVEL OF EVIDENCE: 4 Laryngoscope, 129:1627-1633, 2019.


Subject(s)
Dysphonia/physiopathology , Laryngeal Muscles/physiopathology , Spasm/physiopathology , Voice Disorders/physiopathology , Adult , Female , Humans , Male , Self Report , Singing , Speech Production Measurement
7.
Sci Rep ; 9(1): 8747, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217496

ABSTRACT

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and carries a dismal prognosis. Significant challenges in the care of patients with GBM include marked vascular heterogeneity and arteriovenous (AV) shunting, which results in tumor hypoxia and inadequate delivery of systemic treatments to reach tumor cells. In this study, we investigated the utility of different MR perfusion techniques to detect and quantify arteriovenous (AV) shunting and tumor hypoxia in patients with GBM. Macrovascular shunting was present in 33% of subjects, with the degree of shunting ranging from (37-60%) using arterial spin labeling perfusion. Among the dynamic susceptibility contrast-enhanced perfusion curve features, there were a strong negative correlation between hypoxia score, DSC perfusion curve recovery slope (r = -0.72, P = 0.018) and angle (r = -0.73, P = 0.015). The results of this study support the possibility of using arterial spin labeling and pattern analysis of dynamic susceptibility contrast-enhanced MR Imaging for evaluation of arteriovenous shunting and tumor hypoxia in glioblastoma.


Subject(s)
Brain Neoplasms/diagnostic imaging , Contrast Media/administration & dosage , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging , Spin Labels , Aged , Cell Hypoxia , Female , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL