Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Environ Sci Technol ; 52(1): 52-60, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29182849

ABSTRACT

To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.


Subject(s)
Sewage , Water Pollutants, Chemical , Amines , Kinetics , Waste Disposal, Fluid , Wastewater
2.
Environ Sci Technol ; 50(9): 4682-92, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27046099

ABSTRACT

The biotransformation of some micropollutants has previously been observed to be positively associated with ammonia oxidation activities and the transcript abundance of the archaeal ammonia monooxygenase gene (amoA) in nitrifying activated sludge. Given the increasing interest in and potential importance of ammonia-oxidizing archaea (AOA), we investigated the capabilities of an AOA pure culture, Nitrososphaera gargensis, to biotransform ten micropollutants belonging to three structurally similar groups (i.e., phenylureas, tertiary amides, and tertiary amines). N. gargensis was able to biotransform two of the tertiary amines, mianserin (MIA) and ranitidine (RAN), exhibiting similar compound specificity as two ammonia-oxidizing bacteria (AOB) strains that were tested for comparison. The same MIA and RAN biotransformation reactions were carried out by both the AOA and AOB strains. The major transformation product (TP) of MIA, α-oxo MIA was likely formed via a two-step oxidation reaction. The first hydroxylation step is typically catalyzed by monooxygenases. Three RAN TP candidates were identified from nontarget analysis. Their tentative structures and possible biotransformation pathways were proposed. The biotransformation of MIA and RAN only occurred when ammonia oxidation was active, suggesting cometabolic transformations. Consistently, a comparative proteomic analysis revealed no significant differential expression of any protein-encoding gene in N. gargensis grown on ammonium with MIA or RAN compared with standard cultivation on ammonium only. Taken together, this study provides first important insights regarding the roles played by AOA in micropollutant biotransformation.


Subject(s)
Ammonia/metabolism , Archaea/metabolism , Bacteria/metabolism , Biotransformation , Molecular Sequence Data , Oxidation-Reduction , Pharmaceutical Preparations/metabolism , Phylogeny , Proteomics , Soil Microbiology
3.
Environ Sci Technol ; 50(6): 2908-20, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26864277

ABSTRACT

The main removal process for polar organic micropollutants during activated sludge treatment is biotransformation, which often leads to the formation of stable transformation products (TPs). Because the analysis of TPs is challenging, the use of pathway prediction systems can help by generating a list of suspected TPs. To complete and refine pathway prediction, comprehensive biotransformation studies for compounds exhibiting pertinent functional groups under environmentally relevant conditions are needed. Because many polar organic micropollutants present in wastewater contain one or several amine functional groups, we systematically explored amine biotransformation by conducting experiments with 19 compounds that contained 25 structurally diverse primary, secondary, and tertiary amine moieties. The identification of 144 TP candidates and the structure elucidation of 101 of these resulted in a comprehensive view on initial amine biotransformation reactions. The reactions with the highest relevance were N-oxidation, N-dealkylation, N-acetylation, and N-succinylation. Whereas many of the observed reactions were similar to those known for the mammalian metabolism of amine-containing xenobiotics, some N-acylation reactions were not previously described. In general, different reactions at the amine functional group occurred in parallel. Finally, recommendations on how these findings can be implemented to improve microbial pathway prediction of amine-containing micropollutants are given.


Subject(s)
Amines/chemistry , Biodegradation, Environmental , Sewage/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism
4.
Environ Sci Technol ; 48(23): 13760-8, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25337862

ABSTRACT

Removal of micropollutants (MPs) during activated sludge treatment can mainly be attributed to biotransformation and sorption to sludge flocs, whereby the latter process is known to be of minor importance for polar organic micropollutants. In this work, we investigated the influence of pH on the biotransformation of MPs with cationic-neutral speciation in an activated sludge microbial community. We performed batch biotransformation, sorption control, and abiotic control experiments for 15 MPs with cationic-neutral speciation, one control MP with neutral-anionic speciation, and two neutral MPs at pHs 6, 7, and 8. Biotransformation rate constants corrected for sorption and abiotic processes were estimated from measured concentration time series with Bayesian inference. We found that biotransformation is pH-dependent and correlates qualitatively with the neutral fraction of the ionizable MPs. However, a simple speciation model based on the assumption that only the neutral species is efficiently taken up and biotransformed by the cells tends to overpredict the effect of speciation. Therefore, additional mechanisms such as uptake of the ionic species and other more complex attenutation mechanisms are discussed. Finally, we observed that the sorption coefficients derived from our control experiments were small and showed no notable pH-dependence. From this we conclude that pH-dependent removal of polar, ionizable organic MPs in activated sludge systems is less likely an effect of pH-dependent sorption but rather of pH-dependent biotransformation. The latter has the potential to cause marked differences in the removal of polar, ionizable MPs at different operational pHs during activated sludge treatment.


Subject(s)
Organic Chemicals/metabolism , Sewage/analysis , Water Pollutants, Chemical/metabolism , Absorption, Physicochemical , Bayes Theorem , Biotransformation , Hydrogen-Ion Concentration , Models, Theoretical
5.
Water Res ; 200: 117200, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34051461

ABSTRACT

Ozonation is increasingly applied in water and wastewater treatment for the abatement of micropollutants (MPs). However, the transformation products formed during ozonation (OTPs) and their fate in biological or sorptive post-treatments is largely unknown. In this project, a high-throughput approach, combining laboratory ozonation experiments and detection by liquid chromatography high-resolution mass spectrometry (LC-HR-MS/MS), was developed and applied to identify OTPs formed during ozonation of wastewater effluent for a large number of relevant MPs (total 87). For the laboratory ozonation experiments, a simplified experimental solution, consisting of surrogate organic matter (methanol and acetate), was created, which produced ozonation conditions similar to realistic conditions in terms of ozone and hydroxyl radical exposures. The 87 selected parent MPs were divided into 19 mixtures, which enabled the identification of OTPs with an optimized number of experiments. The following two approaches were considered to identify OTPs. (1) A screening of LC-HR-MS signal formation in these experiments was performed and revealed a list of 1749 potential OTP candidate signals associated to 70 parent MPs. This list can be used in future suspect screening studies. (2) A screening was performed for signals that were formed in both batch experiments and in samples of wastewater treatment plants (WWTPs). This second approach was ultimately more time-efficient and was applied to four different WWTPs with ozonation (specific ozone doses in the range 0.23-0.55 gO3/gDOC), leading to the identification of 84 relevant OTPs of 40 parent MPs in wastewater effluent. Chemical structures could be proposed for 83 OTPs through the interpretation of MS/MS spectra and expert knowledge in ozone chemistry. Forty-eight OTPs (58%) have not been reported previously. The fate of the verified OTPs was studied in different post-treatment steps. During sand filtration, 87-89% of the OTPs were stable. In granular activated carbon (GAC) filters, OTPs were abated with decreasing efficiency with increasing run times of the filters. For example, in a GAC filter with 16,000 bed volumes, 53% of the OTPs were abated, while in a GAC filter with 35,000 bed volumes, 40% of the OTPs were abated. The highest abatement (87% of OTPs) was observed when 13 mg/L powdered activated carbon (PAC) was dosed onto a sand filter.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Laboratories , Tandem Mass Spectrometry , Wastewater/analysis , Water Pollutants, Chemical/analysis
6.
Water Res ; 207: 117812, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34839057

ABSTRACT

Micropollutants (MP) with varying ozone-reactive moieties were spiked to lake water in the influent of a drinking water pilot plant consisting of an ozonation followed by a biological sand filtration. During ozonation, 227 transformation products (OTPs) from 39 of the spiked 51 MPs were detected after solid phase extraction by liquid chromatography high-resolution mass spectrometry (LC-HRMS/MS). Based on the MS/MS data, tentative molecular structures are proposed. Reaction mechanisms for the formation of a large number of OTPs are suggested by combination of the kinetics of formation and abatement and state-of-the-art knowledge on ozone and hydroxyl radical chemistry. OTPs forming as primary or higher generation products from the oxidation of MPs could be differentiated. However, some expected products from the reactions of ozone with activated aromatic compounds and olefins were not detected with the applied analytical procedure. 187 OTPs were present in the sand filtration in sufficiently high concentrations to elucidate their fate in this treatment step. 35 of these OTPs (19%) were abated in the sand filtration step, most likely due to biodegradation. Only 24 (13%) of the OTPs were abated more efficiently than the parent compounds, with a dependency on the functional group of the parent MPs and OTPs. Overall, this study provides evidence, that the common assumption that OTPs are easily abated in biological post-treatment is not generally valid. Nevertheless, it is unknown how the OTPs, which escaped detection, would have behaved in the biological post-treatment.


Subject(s)
Drinking Water , Ozone , Water Pollutants, Chemical , Water Purification , Tandem Mass Spectrometry , Wastewater/analysis , Water Pollutants, Chemical/analysis
8.
J Am Soc Mass Spectrom ; 28(12): 2692-2704, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28952028

ABSTRACT

High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. Graphical Abstract ᅟ.

9.
J Chem Theory Comput ; 8(11): 4062-8, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-26605573

ABSTRACT

For lanthanides, segmented contracted Gaussian basis sets of double-ζ valence to quadruple-ζ valence quality are presented, with two different polarization sets for each level of quality. The bases are designed for use in connection with small-core Wood-Boring effective core potentials. A set of compounds representing most lanthanides in their common oxidation states is used to assess the quality. Parameters investigated were atomization energies, dipole moments, and structure parameters for Hartree-Fock, density functional, and correlated (Møller-Plesset) methods. So, the "def2" basis set series is extended to lanthanides with errors that are very similar to those previously obtained for the other elements with this type of basis set. Furthermore, for lanthanides, auxiliary bases for density fitting of Coulomb and Hartree-Fock exchange matrices are presented and tested.

SELECTION OF CITATIONS
SEARCH DETAIL