Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125836

ABSTRACT

Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreatment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively analyzed using fluorescent immunocytochemistry. BAF pretreatment hampered microglial survival and decreased Iba1 protein level under all culturing conditions. Cytoplasmic p62/SQSTM1 level was increased in cultures treated with LPS+RST but reversed markedly when BAF+LPS+RST were applied together. Furthermore, the number of p62/SQSTM1 immunoreactive autophagosome puncta was significantly reduced when RST was used but increased significantly in BAF+RST-treated cultures, indicating a modulation of autophagic flux through reduction in p62/SQSTM1 degradation. These findings collectively indicate that the cytoplasmic level of p62/SQSTM1 protein and autophagocytotic flux are differentially regulated, regardless of pro- or anti-inflammatory state, and provide context for understanding the role of autophagy in microglial function in various inflammatory settings.


Subject(s)
Autophagosomes , Autophagy , Lipopolysaccharides , Macrolides , Microglia , Sequestosome-1 Protein , Animals , Sequestosome-1 Protein/metabolism , Microglia/metabolism , Microglia/drug effects , Macrolides/pharmacology , Autophagy/drug effects , Rats , Autophagosomes/metabolism , Autophagosomes/drug effects , Lipopolysaccharides/pharmacology , Cells, Cultured , Inflammation/metabolism , Biomarkers/metabolism
2.
Int J Mol Sci ; 23(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35163002

ABSTRACT

Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS). The protein levels of selected inflammatory markers C-X-C motif chemokine ligand 10 (CXCL10) and C-C motif chemokine receptor 1 (CCR1), histone H3, and posttranslational modifications of histone H3 lys methylation sites (H3K9me3 and H3K36me2, marks typically associated with opposite effects on gene expression) were analyzed using quantitative fluorescent immunocytochemistry and western blots in control or LPS-treated cultures with or without KYNA or SZR104. KYNA and SZR104 reduced levels of the inflammatory marker proteins CXCL10 and CCR1 after LPS-treatment. Moreover, KYNA and SZR104 favorably affected histone methylation patterns as H3K9me3 and H3K36me2 immunoreactivities, and histone H3 protein levels returned toward control values after LPS treatment. The cytoplasmic translocation of H3K9me3 from the nucleus indicated inflammatory distress, a process that could be inhibited by KYNA and SZR104. Thus, KYNA signaling and metabolism, and especially brain-penetrable KYNA analogs such as SZR104, could be key targets in the pathway that connects chromatin structure and epigenetic mechanisms with functional consequences that affect neuroinflammation and perhaps neurodegeneration.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents/pharmacology , Histones/metabolism , Kynurenic Acid/pharmacology , Lipopolysaccharides/adverse effects , Microglia/cytology , Amides/chemistry , Animals , Animals, Newborn , Anti-Inflammatory Agents/chemistry , Cells, Cultured , Chemokine CXCL10/metabolism , Disease Models, Animal , Epigenesis, Genetic/drug effects , Female , Kynurenic Acid/analogs & derivatives , Male , Methylation/drug effects , Microglia/drug effects , Microglia/metabolism , Pregnancy , Rats , Receptors, CCR1/metabolism
3.
Int J Mol Sci ; 22(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810299

ABSTRACT

Rosuvastatin (RST) is primarily used to treat high cholesterol levels. As it has potentially harmful but not well-documented effects on embryos, RST is contraindicated during pregnancy. To demonstrate whether RST could induce molecular epigenetic events in the brains of newborn rats, pregnant mothers were treated daily with oral RST from the 11th day of pregnancy for 10 days (or until delivery). On postnatal day 1, the brains of the control and RST-treated rats were removed for Western blot or immunohistochemical analyses. Several antibodies that recognize different methylation sites for H2A, H2B, H3, and H4 histones were quantified. Analyses of cell-type-specific markers in the newborn brains demonstrated that prenatal RST administration did not affect the composition and cell type ratios as compared to the controls. Prenatal RST administration did, however, induce a general, nonsignificant increase in H2AK118me1, H2BK5me1, H3, H3K9me3, H3K27me3, H3K36me2, H4, H4K20me2, and H4K20me3 levels, compared to the controls. Moreover, significant changes were detected in the number of H3K4me1 and H3K4me3 sites (134.3% ± 19.2% and 127.8% ± 8.5% of the controls, respectively), which are generally recognized as transcriptional activators. Fluorescent/confocal immunohistochemistry for cell-type-specific markers and histone methylation marks on tissue sections indicated that most of the increase at these sites belonged to neuronal cell nuclei. Thus, prenatal RST treatment induces epigenetic changes that could affect neuronal differentiation and development.


Subject(s)
Anticholesteremic Agents/adverse effects , Brain/drug effects , Embryo, Mammalian/drug effects , Epigenesis, Genetic , Histone Code , Rosuvastatin Calcium/adverse effects , Animals , Anticholesteremic Agents/pharmacology , Brain/embryology , Brain/metabolism , Female , Histones/drug effects , Histones/metabolism , Methylation , Rats , Rats, Sprague-Dawley , Rosuvastatin Calcium/pharmacology
4.
Cell Tissue Res ; 382(3): 551-561, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32696216

ABSTRACT

Inflammation of the cutaneous orofacial tissue can lead to a prolonged alteration of neuronal and nonneuronal cellular functions in trigeminal nociceptive pathways. In this study, we investigated the effects of experimentally induced skin inflammation by dithranol (anthralin) on macrophage activation in the rat trigeminal ganglion. Tissue localization and protein expression levels of ionized calcium-binding adaptor molecule 1 (Iba1), a macrophage/microglia-specific marker, and proliferation/mitotic marker antigen identified by the monoclonal antibody Ki67 (Ki67), were quantitatively analyzed using immunohistochemistry and western blots in control, dithranol-treated, dithranol- and corticosteroid-treated, and corticosteroid-treated trigeminal ganglia. Chronic orofacial dithranol treatment elicited a strong pro-inflammatory effect in the ipsilateral trigeminal ganglion. Indeed, daily dithranol treatment of the orofacial skin for 3-5 days increased the number of macrophages and Iba1 protein expression in the maxillary subregion of the ipsilateral ganglion. In the affected ganglia, none of the Iba1-positive cells expressed Ki67. This absence of mitotically active cells suggested that the accumulation of macrophages in the ganglion was not the result of resident microglia proliferation but rather the extravasation of hematogenous monocytes from the periphery. Subsequently, when a 5-day-long anti-inflammatory corticosteroid therapy was employed on the previously dithranol-treated orofacial skin, Iba1 immunoreactivity was substantially reduced in the ipsilateral ganglion. Collectively, our findings indicate that both peripheral inflammation and subsequent anti-inflammatory therapy affect macrophage activity and thus interfere with the functioning of the affected sensory ganglion neurons.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Inflammation/physiopathology , Macrophages/metabolism , Skin/physiopathology , Trigeminal Ganglion/drug effects , Adrenal Cortex Hormones/pharmacology , Animals , Male , Rats
5.
Int J Mol Sci ; 21(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297593

ABSTRACT

Kynurenic acid is an endogenous modulator of ionotropic glutamate receptors and a suppressor of the immune system. Since glutamate and microglia are important in the pathogenesis of epilepsy, we investigated the possible action of the synthetic kynurenic acid analogue, SZR104, in epileptic mice and the action of kynurenic acid and SZR104 on the phagocytotic activity of cultured microglia cells. Pilocarpine epilepsy was used to test the effects of SZR104 on morphological microglia transformation, as evaluated through ionized calcium-binding adaptor molecule 1 (Iba1) immunohistochemistry. Microglia-enriched rat secondary cultures were used to investigate phagocytosis of fluorescent microbeads and Iba1 protein synthesis in control and lipopolysaccharide-challenged cultures. SZR104 inhibited microglia transformation following status epilepticus. Kynurenic acid and SZR104 inhibited lipopolysaccharide-stimulated phagocytotic activity of microglia cells. Although kynurenic acid and its analogues proved to be glutamate receptor antagonists, their immunosuppressive action was dominant in epilepsy. The inhibition of phagocytosis in vitro raised the possibility of the inhibition of genes encoding inflammatory cytokines in microglial cells.


Subject(s)
Epilepsy/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Kynurenic Acid/analogs & derivatives , Microglia/metabolism , Phagocytosis/drug effects , Animals , Calcium-Binding Proteins/metabolism , Cells, Cultured , Epilepsy/etiology , Excitatory Amino Acid Antagonists/chemistry , Lipopolysaccharides/toxicity , Male , Mice , Microfilament Proteins/metabolism , Microglia/drug effects , Pilocarpine/toxicity
6.
Epigenomes ; 8(1)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38534795

ABSTRACT

Temporal and spatial epigenetic modifications in the brain occur during ontogenetic development, pathophysiological disorders, and aging. When epigenetic marks, such as histone methylations, in brain autopsies or biopsy samples are studied, it is critical to understand their postmortem/surgical stability. For this study, the frontal cortex and hippocampus of adult rats were removed immediately (controls) or after a postmortem delay of 15, 30, 60, 90, 120, or 150 min. The patterns of unmodified H3 and its trimethylated form H3K9me3 were analyzed in frozen samples for Western blot analysis and in formalin-fixed tissues embedded in paraffin for confocal microscopy. We found that both the unmodified H3 and H3K9me3 showed time-dependent but opposite changes and were altered differently in the frontal cortex and hippocampus with respect to postmortem delay. In the frontal cortex, the H3K9me3 marks increased approximately 450% with a slow parallel 20% decrease in the unmodified H3 histones after 150 min. In the hippocampus, the change was opposite, since H3K9me3 marks decreased steadily by approximately 65% after 150 min with a concomitant rapid increase of 20-25% in H3 histones at the same time. Confocal microscopy located H3K9me3 marks in the heterochromatic regions of the nuclei of all major cell types in the control brains: oligodendrocytes, astrocytes, neurons, and microglia. Therefore, epigenetic marks could be affected differently by postmortem delay in different parts of the brain.

7.
Sci Rep ; 13(1): 11328, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443330

ABSTRACT

We previously showed the anti-inflammatory effects of kynurenic acid (KYNA) and its brain-penetrable analog N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide (SZR104) both in vivo and in vitro. Here, we identified the cytomorphological effects of KYNA and SZR104 in secondary microglial cultures established from newborn rat forebrains. We quantitatively analyzed selected morphological aspects of microglia in control (unchallenged), lipopolysaccharide (LPS)-treated (challenged), KYNA- or SZR104-treated, and LPS + KYNA or LPS + SZR104-treated cultures. Multicolor immunofluorescence labeling followed by morphometric analysis (area, perimeter, transformation index, lacunarity, density, span ratio, maximum span across the convex hull, hull circularity, hull area, hull perimeter, max/min radii, mean radius, diameter of bounding circle, fractal dimension, roughness, circularity) on binary (digital) silhouettes of the microglia revealed their morphological plasticity under experimental conditions. SZR104 and, to a lesser degree, KYNA inhibited proinflammatory phenotypic changes. For example, SZR104 treatment resulted in hypertrophied microglia characterized by a swollen cell body, enlarged perimeter, increased transformation index/decreased circularity, increased convex hull values (area, perimeter, mean radius, maximum span, diameter of the bounding circle and hull circularity), altered box-counting parameters (such as fractal dimension), and increased roughness/decreased density. Taken together, analysis of cytomorphological features could contribute to the characterization of the anti-inflammatory activity of SZR104 on cultured microglia.


Subject(s)
Kynurenic Acid , Microglia , Rats , Animals , Kynurenic Acid/pharmacology , Cells, Cultured , Lipopolysaccharides/pharmacology , Phenotype , Anti-Inflammatory Agents/pharmacology
8.
Sci Rep ; 12(1): 21817, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36528685

ABSTRACT

Ageing is driven by the progressive, lifelong accumulation of cellular damage. Autophagy (cellular self-eating) functions as a major cell clearance mechanism to degrade such damages, and its capacity declines with age. Despite its physiological and medical significance, it remains largely unknown why autophagy becomes incapable of effectively eliminating harmful cellular materials in many cells at advanced ages. Here we show that age-associated defects in autophagic degradation occur at both the early and late stages of the process. Furthermore, in the fruit fly Drosophila melanogaster, the myotubularin-related (MTMR) lipid phosphatase egg-derived tyrosine phosphatase (EDTP) known as an autophagy repressor gradually accumulates in brain neurons during the adult lifespan. The age-related increase in EDTP activity is associated with a growing DNA N6-adenine methylation at EDTP locus. MTMR14, the human counterpart of EDTP, also tends to accumulate with age in brain neurons. Thus, EDTP, and presumably MTMR14, promotes brain ageing by increasingly suppressing autophagy throughout adulthood. We propose that EDTP and MTMR14 phosphatases operate as endogenous pro-ageing factors setting the rate at which neurons age largely independently of environmental factors, and that autophagy is influenced by DNA N6-methyladenine levels in insects.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Humans , Adult , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Autophagy/genetics , Aging/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Neurons/metabolism , Drosophila/metabolism , Protein Tyrosine Phosphatases/metabolism , Brain/metabolism , Lipids , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
9.
IBRO Neurosci Rep ; 10: 119-129, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33842918

ABSTRACT

Morphological and functional characterizations of cultured microglia are essential for the improved understanding of their roles in neuronal health and disease. Although some studies (phenotype analysis, phagocytosis) can be carried out in mixed or microglia-enriched cultures, in others (gene expression) pure microglia must be used. If the use of genetically modified microglial cells is not feasible, isolation of resident microglia from nervous tissue must be carried out. In this study, mixed primary cultures were established from the forebrains of newborn rats. Secondary microglia-enriched cultures were then prepared by shaking off these cells from the primary cultures, which were subsequently used to establish tertiary cultures by further shaking off the easily detachable microglia. The composition of these cultures was quantitatively analyzed by immunocytochemistry of microglia-, astrocyte-, oligodendrocyte- and neuron-specific markers to determine yield and purity. Microglia were quantitatively characterized regarding morphological and proliferation aspects. Secondary and tertiary cultures typically exhibited 73.3% ± 17.8% and 93.1% ± 6.0% purity for microglia, respectively, although the total number of microglia in the latter was much smaller. One in seven attempts of culturing the tertiary cultures had ~99% purity for microglia. The overall yield from the number of cells plated at DIV0 to the Iba1-positive microglia in tertiary cultures was ~1%. Astrocytic and neuronal contamination progressively decreased during subcloning, while oligodendrocytes were found sporadically throughout culturing. Although the tertiary microglia cultures had a low yield, they produced consistently high purity for microglia; after validation, such cultures are suitable for purity-sensitive functional screenings (gene/protein expression).

10.
Front Immunol ; 12: 730088, 2021.
Article in English | MEDLINE | ID: mdl-34484241

ABSTRACT

In December 2019, a new viral disease emerged and quickly spread all around the world. In March 2020, the COVID-19 outbreak was classified as a global pandemic and by June 2021, the number of infected people grew to over 170 million. Along with the patients' mild-to-severe respiratory symptoms, reports on probable central nervous system (CNS) effects appeared shortly, raising concerns about the possible long-term detrimental effects on human cognition. It remains unresolved whether the neurological symptoms are caused directly by the SARS-CoV-2 infiltration in the brain, indirectly by secondary immune effects of a cytokine storm and antibody overproduction, or as a consequence of systemic hypoxia-mediated microglia activation. In severe COVID-19 cases with impaired lung capacity, hypoxia is an anticipated subsidiary event that can cause progressive and irreversible damage to neurons. To resolve this problem, intensive research is currently ongoing, which seeks to evaluate the SARS-CoV-2 virus' neuroinvasive potential and the examination of the antibody and autoantibody generation upon infection, as well as the effects of prolonged systemic hypoxia on the CNS. In this review, we summarize the current research on the possible interplay of the SARS-CoV-2 effects on the lung, especially on alveolar macrophages and direct and indirect effects on the brain, with special emphasis on microglia, as a possible culprit of neurological manifestation during COVID-19.


Subject(s)
COVID-19/complications , Central Nervous System Infections/complications , Central Nervous System Infections/virology , Lung/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/immunology , Humans , Lung/immunology , Microglia/immunology , Microglia/pathology , Microglia/virology , Nervous System Diseases/virology , SARS-CoV-2/immunology
11.
Neurochem Int ; 54(1): 28-36, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18984021

ABSTRACT

The binding of two radiolabelled analogues (N-(5-[125I]Iodo-2-phenoxyphenyl)-N-(2,5-dimethoxybenzyl)acetamide ([125I]desfluoro-DAA1106) and N-(5-[125I]Fluoro-2-phenoxyphenyl)-N-(2-[125I]Iodo-5-methoxybenzyl)acetamide ([125I]desmethoxy-DAA1106) of the peripheral benzodiazepine receptor (PBR) (or TSPO, 18kDa translocator protein) ligand DAA1106 was examined by in vitro autoradiography on human post mortem whole hemisphere brain slices obtained from Alzheimer's disease (AD) patients and age-matched controls. Both [(125)I]desfluoro-IDAA1106 and [(125)I]desmethoxy-IDAA1106 were effectively binding to various brain structures. The binding could be blocked by the unlabelled ligand as well as by other PBR specific ligands. With both radiolabelled compounds, the binding showed regional inhomogeneity and the specific binding values proved to be the highest in the hippocampus, temporal and parietal cortex, the basal ganglia and thalamus in the AD brains. Compared with age-matched control brains, specific binding in several brain structures (temporal and parietal lobes, thalamus and white matter) in Alzheimer brains was significantly higher, indicating that the radioligands can effectively label-activated microglia and the up-regulated PBR/TSPO system in AD. Complementary immunohistochemical studies demonstrated reactive microglia activation in the AD brain tissue and indicated that increased ligand binding coincides with increased regional microglia activation due to neuroinflammation. These investigations yield further support to the PBR/TSPO binding capacity of DAA1106 in human brain tissue, demonstrate the effective usefulness of its radio-iodinated analogues as imaging biomarkers in post mortem human studies, and indicate that its radiolabelled analogues, labelled with short half-time bioisotopes, can serve as prospective in vivo imaging biomarkers of activated microglia and the up-regulated PBR/TSPO system in the human brain.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Receptors, GABA-A/metabolism , Acetamides/metabolism , Aged, 80 and over , Autoradiography , Female , Humans , Immunohistochemistry , Iodine Radioisotopes , Kinetics , Male , Middle Aged , Phenyl Ethers/metabolism , Postmortem Changes , Reference Values
12.
Neurochem Int ; 52(1-2): 265-71, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17664023

ABSTRACT

The cutaneous and mucosal surfaces in the infraorbital region around the whisker pad are innervated by the maxillary division of the afferent fibers of the trigeminal nerve, while certain ganglion cells project to the principal sensory trigeminal nucleus (Pr5). In turn, some of the neurons in the Pr5 project to the motor trigeminal nucleus (Mo5), whose neurons do not innervate the infraorbital skin. We analyzed the calmodulin (CaM) gene expression in these nuclei after dithranol-induced inflammation and subsequent treatment with corticosteroid in the infraorbital skin. CaM gene-specific mRNA populations were detected through quantitative image analysis of the distribution of CaM gene-specific riboprobes in brain stem cryostat sections of control rats and rats chronically treated with dithranol, corticosteroid or both. These nuclei displayed a differentially altered CaM gene expression in response to the treatments. While the CaM I and II mRNA contents were increased, the CaM III transcripts remained unaltered after chronic dithranol treatment in the Mo5. In the Pr5, however, the CaM mRNA contents were either unchanged (CaM I and III) or increased (CaM II). Subsequent corticosteroid treatment reversed the stimulatory effects of dithranol on the expression of all the CaM genes in the Mo5, but was without significant effects on the CaM I and II genes, or even increased the CaM III mRNA contents in the Pr5. Corticosteroid treatment alone was either ineffective or decreased the levels of CaM mRNAs in these nuclei. These data suggest that peripheral noxae of dermal origin may result in a trans-synaptically acting differential regulation of the multiple CaM genes in the brain.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Calmodulin/genetics , Gene Expression Regulation , Inflammation/genetics , Synapses/metabolism , Trigeminal Nerve/pathology , Animals , Brain/metabolism , Face , In Situ Hybridization , Inflammation/drug therapy , Male , Mouth , Rats , Rats, Sprague-Dawley
13.
Neurochem Int ; 53(6-8): 181-3, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18832000

ABSTRACT

We demonstrate the feasibility and usefulness of the histoblot immunostaining of cryosections of whole hemispheres of healthy and Alzheimer diseased (AD) human brains by localizing a neuron-specific marker, the anti-neuronal nuclei (NeuN) antigen. As expected, cortical NeuN-immunopositive regions were generally thinner and lighter in the AD brains than in the controls. The advantages of using whole hemisphere histoblots: (1) they provide a low-resolution overview/outline of the antigen distribution in a large surface area, (2) large, thick, and/or unfixed tissue sections from post-mortem samples (perhaps of inferior tissue quality) can be compared, and (3) subsequent immunohistochemistry can be performed on the tissue sections used for the histoblots.


Subject(s)
Alzheimer Disease/metabolism , Cerebral Cortex/chemistry , Immunoblotting/methods , Immunohistochemistry/methods , Staining and Labeling/methods , Aged , Alzheimer Disease/pathology , Antigens, Nuclear/analysis , Biomarkers/analysis , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Collodion , Female , Humans , Image Processing, Computer-Assisted , Male , Membranes, Artificial , Microtomy , Middle Aged , Nerve Degeneration/metabolism , Nerve Degeneration/pathology , Nerve Tissue Proteins/analysis , Neurons/metabolism , Neurons/pathology
14.
Neuropeptides ; 42(1): 57-67, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18068762

ABSTRACT

[(3)H]Tyr-Tic-(2S,3R)-beta-MePhe-Phe-OH (where Tic: 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) with a specific radioactivity of 53.7 Ci/mmol was synthesized and characterized in receptor binding assays at 25 degrees C in rat brain membranes. The specific binding was saturable and displayed high affinity, with a K(D) of 0.16+/-0.005 nM and B(max) of 85.9+/-6.3 fmol/mg protein. NaCl increased its affinity by about 4-fold in membranes of rat brain and Chinese Hamster Ovary Cells stably transfected with the human delta-opioid receptors (hDOR-CHO) showing that the new ligand is an antagonist. The prototypic delta-opioid ligands were much more potent than mu- or kappa-specific ligands in competition assays. The autoradiographic distribution of the binding sites of the new ligand agreed with the known locations of the delta-opioid receptors in rat brain. The unlabeled new ligand was about 7-fold more potent than the parent peptide in competing for the binding sites of [(3)H]Tyr-Tic-(2S,3R)-beta-MePhe-Phe-OH in rat brain membranes. Likewise, the threo-beta-methyl analog was 3.8-fold more potent than the parent compound in antagonizing the effect of DPDPE in the [(35)S]GTPgammaS functional assay in hDOR-CHO membranes. The new, highly potent, conformationally constrained antagonist may be a valuable pharmacological tool in understanding the structural and topographical requirements of peptide ligand binding to the delta-opioid receptors.


Subject(s)
Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Receptors, Opioid, delta/antagonists & inhibitors , Analgesics, Opioid/antagonists & inhibitors , Analgesics, Opioid/pharmacology , Animals , Autoradiography , Binding Sites , Brain Chemistry/drug effects , CHO Cells , Cricetinae , Cricetulus , Enkephalin, D-Penicillamine (2,5)-/antagonists & inhibitors , Enkephalin, D-Penicillamine (2,5)-/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology , Humans , Male , Radioligand Assay , Rats , Rats, Wistar
15.
Brain Res Bull ; 132: 61-74, 2017 06.
Article in English | MEDLINE | ID: mdl-28528204

ABSTRACT

Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1ß, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1ß and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1ß, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Aspirin/pharmacology , Immunologic Factors/pharmacology , Microglia/drug effects , Microglia/immunology , Animals , Blotting, Western , Calcium-Binding Proteins/metabolism , Cells, Cultured , Cerebral Cortex , Dose-Response Relationship, Drug , Gene Expression/drug effects , Gene Expression/physiology , Immunohistochemistry , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Microfilament Proteins/metabolism , Microglia/cytology , Microglia/pathology , Phagocytosis/drug effects , Phagocytosis/physiology , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/metabolism
16.
Sci Rep ; 7: 42014, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28205624

ABSTRACT

Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson's and Huntington's diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging.


Subject(s)
Neurodegenerative Diseases/prevention & control , Neuroprotective Agents/administration & dosage , Animals , Autophagy/drug effects , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Drosophila , Neurons/drug effects , Neurons/physiology , Neuroprotective Agents/pharmacology
17.
Brain Res ; 1121(1): 216-20, 2006 Nov 22.
Article in English | MEDLINE | ID: mdl-17011532

ABSTRACT

Dithranol has been used to treat psoriasis for decades. Although its beneficial effect may involve the induction of cutaneous inflammation, and inflammation often leads to damages in nerve fibers, these alterations are not well documented. Therefore, we investigated the effects of dithranol on the immunohistochemical characteristics of the cutaneous nerve fibers in the rat skin. Epidermal nerve fiber staining was achieved with ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) immunohistochemistry in the orofacial skin of control rats, rats treated with (a) dithranol for 5 days, (b) corticosteroid for 5 days following dithranol treatment for 5 days, and (c) corticosteroid for 5 days. The results revealed a complete loss of UCH-L1 immunoreactivity in the dithranol-treated animals. Topical application of corticosteroid onto the inflamed skin for 5 days reversed this effect: the UCH-L1 immunoreactivity was almost completely restored. Steroid treatment for 5 days did not change the appearance of the UCH-L1-immunoreactive nerve fibers. These findings were supported by Western blot analyses. We conclude that dithranol, incidentally similarly to psoriasis, causes inflammation and abolishes UCH-L1 immunoreactivity in the rat orofacial skin in a corticosteroid-reversible manner. This phenomenon may be due to the ability of dithranol to cause oxidative damage to the UCH-L1 protein, and to the antioxidant activity of the corticosteroids countering this effect.


Subject(s)
Anthralin/pharmacology , Dermatologic Agents/pharmacology , Nerve Fibers/physiology , Skin/innervation , Ubiquitin Thiolesterase/antagonists & inhibitors , Animals , Face , Humans , Image Processing, Computer-Assisted , Inflammation/physiopathology , Inflammation/prevention & control , Male , Models, Animal , Mouth , Nerve Fibers/drug effects , Psoriasis/drug therapy , Rats , Rats, Sprague-Dawley , Software , Ubiquitin Thiolesterase/therapeutic use
18.
Acta Histochem ; 108(6): 455-62, 2006.
Article in English | MEDLINE | ID: mdl-16949651

ABSTRACT

We investigated the expression patterns of the three calmodulin (CaM) genes, using in situ hybridization techniques, to detect gene-specific [(35)S]- and digoxigenin-labeled cRNA probes complementary to the multiple CaM mRNAs in the nuclei of the midbrain-brain stem region of the adult rat. The distinct CaM genes were widely expressed throughout this region with moderate intensities. In spite of the similar general pattern, significant differences in the distributions of the multiple CaM mRNA species were found in certain areas. In general, the CaM III mRNAs were most abundant, followed by the CaM I and CaM II mRNA populations. Most of the transcripts were found in the neuronal somata comprising the medullar nuclei, while much less label was detected in the neuropil. The CaM III mRNAs were more than 2.5 times more abundant than the CaM II mRNAs in the nucleus of the trapezoid body, and more than two times more abundant in the motor trigeminal nucleus, the principal sensory trigeminal nucleus and the olivary nucleus. The CaM III mRNAs were less dominant in the medial lemniscus, the inferior colliculus and the pontine reticular nucleus than those of the other CaM gene-specific transcripts. The CaM mRNA levels were low to moderate, without significant differences, in the mesencephalic trigeminal nucleus. The differential control of the expression of the CaM genes may contribute to the regulation of the multiple neuronal functions linked to this complex brain region and regulated by different CaM-dependent mechanisms via its target proteins.


Subject(s)
Calmodulin/biosynthesis , Gene Expression Regulation/physiology , Mesencephalon/metabolism , Animals , Calmodulin/genetics , In Situ Hybridization , Male , Mesencephalon/cytology , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Rats , Rats, Sprague-Dawley
19.
Brain Res Bull ; 120: 41-57, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26551061

ABSTRACT

The roles of calmodulin (CaM), a multifunctional intracellular calcium receptor protein, as concerns selected morphological and functional characteristics of pure microglial cells derived from mixed primary cultures from embryonal forebrains of rats, were investigated through use of the CaM antagonists calmidazolium (CALMID) and trifluoperazine (TFP). The intracellular localization of the CaM protein relative to phalloidin, a bicyclic heptapeptide that binds only to filamentous actin, and the ionized calcium-binding adaptor molecule 1 (Iba1), a microglia-specific actin-binding protein, was determined by immunocytochemistry, with quantitative analysis by immunoblotting. In unchallenged and untreated (control) microglia, high concentrations of CaM protein were found mainly perinuclearly in ameboid microglia, while the cell cortex had a smaller CaM content that diminished progressively deeper into the branches in the ramified microglia. The amounts and intracellular distributions of both Iba1 and CaM proteins were altered after lipopolysaccharide (LPS) challenge in activated microglia. CALMID and TFP exerted different, sometimes opposing, effects on many morphological, cytoskeletal and functional characteristics of the microglial cells. They affected the CaM and Iba1 protein expressions and their intracellular localizations differently, inhibited cell proliferation, viability and fluid-phase phagocytosis to different degrees both in unchallenged and in LPS-treated (immunologically challenged) cells, and differentially affected the reorganization of the actin cytoskeleton in the microglial cell cortex, influencing lamellipodia, filopodia and podosome formation. In summary, these CaM antagonists altered different aspects of filamentous actin-based cell morphology and related functions with variable efficacy, which could be important in deciphering the roles of CaM in regulating microglial functions in health and disease.


Subject(s)
Actin Cytoskeleton/drug effects , Calmodulin/antagonists & inhibitors , Microglia/drug effects , Actin Cytoskeleton/metabolism , Animals , Blotting, Western , Calcium-Binding Proteins/metabolism , Calmodulin/metabolism , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Central Nervous System Agents/pharmacology , Frontal Lobe/cytology , Frontal Lobe/drug effects , Frontal Lobe/physiology , Imidazoles/pharmacology , Immunohistochemistry , Intracellular Space/metabolism , Ki-67 Antigen/metabolism , Lipopolysaccharides , Microfilament Proteins/metabolism , Microglia/cytology , Microglia/physiology , Phagocytosis/drug effects , Phagocytosis/physiology , Rats, Sprague-Dawley , Trifluoperazine/pharmacology
20.
J Huntingtons Dis ; 5(2): 133-47, 2016 05 07.
Article in English | MEDLINE | ID: mdl-27163946

ABSTRACT

BACKGROUND: Autophagy, a lysosome-mediated self-degradation process of eukaryotic cells, serves as a main route for the elimination of cellular damage [1-3]. Such damages include aggregated, oxidized or misfolded proteins whose accumulation can cause various neurodegenerative pathologies, including Huntington's disease (HD). OBJECTIVE: Here we examined whether enhanced autophagic activity can alleviate neurophatological features in a Drosophila model of HD (the transgenic animals express a human mutant Huntingtin protein with a long polyglutamine repeat, 128Q). METHODS: We have recently identified an autophagy-enhancing small molecule, AUTEN-67 (autophagy enhancer 67), with potent neuroprotective effects [4]. AUTEN-67 was applied to induce autophagic activity in the HD model used in this study. RESULTS: We showed that AUTEN-67 treatment interferes with the progressive accumulation of ubiquitinated proteins in the brain of Drosophila transgenic for the pathological 128Q form of human Huntingtin protein. The compound significantly improved the climbing ability and moderately extended the mean life span of these flies. Furthermore, brain tissue samples from human patients diagnosed for HD displayed increased levels of the autophagy substrate SQSTM1/p62 protein, as compared with controls. CONCLUSIONS: These results imply that AUTEN-67 impedes the progression of neurodegenerative symptoms characterizing HD, and that autophagy is a promising therapeutic target for treating this pathology. In humans, AUTEN-67 may have the potential to delay the onset and decrease the severity of HD.


Subject(s)
Autophagy/drug effects , Huntington Disease/complications , Naphthoquinones/therapeutic use , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/etiology , Neuroprotective Agents/therapeutic use , Sulfonamides/therapeutic use , Animals , Animals, Genetically Modified , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Disease Progression , Drosophila , Drosophila Proteins/genetics , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Naphthoquinones/metabolism , Neurodegenerative Diseases/genetics , Peptides/genetics , Statistics, Nonparametric , Sulfonamides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL