Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675248

ABSTRACT

The essential oil of German chamomile (Matricaria recutita L.) is widely used in food, cosmetics, and the pharmaceutical industry. α-Bisabolol is the main active substance in German chamomile. Farnesyl diphosphate synthase (FPS) and α-bisabolol synthase (BBS) are key enzymes related to the α-bisabolol biosynthesis pathway. However, little is known about the α-bisabolol biosynthesis pathway in German chamomile, especially the transcription factors (TFs) related to the regulation of α-bisabolol synthesis. In this study, we identified MrFPS and MrBBS and investigated their functions by prokaryotic expression and expression in hairy root cells of German chamomile. The results suggest that MrFPS is the key enzyme in the production of sesquiterpenoids, and MrBBS catalyzes the reaction that produces α-bisabolol. Subcellular localization analysis showed that both MrFPS and MrBBS proteins were located in the cytosol. The expression levels of both MrFPS and MrBBS were highest in the extension period of ray florets. Furthermore, we cloned and analyzed the promoters of MrFPS and MrBBS. A large number of cis-acting elements related to light responsiveness, hormone response elements, and cis-regulatory elements that serve as putative binding sites for specific TFs in response to various biotic and abiotic stresses were identified. We identified and studied TFs related to MrFPS and MrBBS, including WRKY, AP2, and MYB. Our findings reveal the biosynthesis and regulation of α-bisabolol in German chamomile and provide novel insights for the production of α-bisabolol using synthetic biology methods.


Subject(s)
Matricaria , Oils, Volatile , Sesquiterpenes , Geranyltranstransferase/genetics , Matricaria/chemistry , Transcription Factors/genetics , Oils, Volatile/chemistry , Sesquiterpenes/chemistry
2.
BMC Genomics ; 21(1): 169, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32070270

ABSTRACT

BACKGROUND: Matricaria recutita (German chamomile) and Chamaemelum nobile (Roman chamomile) belong to the botanical family Asteraceae. These two herbs are not only morphologically distinguishable, but their secondary metabolites - especially the essential oils present in flowers are also different, especially the terpenoids. The aim of this project was to preliminarily identify regulatory mechanisms in the terpenoid biosynthetic pathways that differ between German and Roman chamomile by performing comparative transcriptomic and metabolomic analyses. RESULTS: We determined the content of essential oils in disk florets and ray florets in these two chamomile species, and found that the terpenoid content in flowers of German chamomile is greater than that of Roman chamomile. In addition, a comparative RNA-seq analysis of German and Roman chamomile showed that 54% of genes shared > 75% sequence identity between the two species. In particular, more highly expressed DEGs (differentially expressed genes) and TF (transcription factor) genes, different regulation of CYPs (cytochrome P450 enzymes), and rapid evolution of downstream genes in the terpenoid biosynthetic pathway of German chamomile could be the main reasons to explain the differences in the types and levels of terpenoid compounds in these two species. In addition, a phylogenetic tree constructed from single copy genes showed that German chamomile and Roman chamomile are closely related to Chrysanthemum nankingense. CONCLUSION: This work provides the first insights into terpenoid biosynthesis in two species of chamomile. The candidate unigenes related to terpenoid biosynthesis will be important in molecular breeding approaches to modulate the essential oil composition of Matricaria recutita and Chamaemelum nobile.


Subject(s)
Chamaemelum/genetics , Chamaemelum/metabolism , Matricaria/genetics , Matricaria/metabolism , Phytochemicals/metabolism , Terpenes/metabolism , Transcriptome , Biosynthetic Pathways , Chamaemelum/chemistry , Computational Biology/methods , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Matricaria/chemistry , Molecular Sequence Annotation , Oils, Volatile/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Sequence Analysis, RNA
3.
Clin Chem ; 66(11): 1424-1433, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33141910

ABSTRACT

BACKGROUND: Distinguishing adenocarcinoma and squamous cell carcinoma subtypes of non-small cell lung cancers is critical to patient care. Preoperative minimally-invasive biopsy techniques, such as fine needle aspiration (FNA), are increasingly used for lung cancer diagnosis and subtyping. Yet, histologic distinction of lung cancer subtypes in FNA material can be challenging. Here, we evaluated the usefulness of desorption electrospray ionization mass spectrometry imaging (DESI-MSI) to diagnose and differentiate lung cancer subtypes in tissues and FNA samples. METHODS: DESI-MSI was used to analyze 22 normal, 26 adenocarcinoma, and 25 squamous cell carcinoma lung tissues. Mass spectra obtained from the tissue sections were used to generate and validate statistical classifiers for lung cancer diagnosis and subtyping. Classifiers were then tested on DESI-MSI data collected from 16 clinical FNA samples prospectively collected from 8 patients undergoing interventional radiology guided FNA. RESULTS: Various metabolites and lipid species were detected in the mass spectra obtained from lung tissues. The classifiers generated from tissue sections yielded 100% accuracy, 100% sensitivity, and 100% specificity for lung cancer diagnosis, and 73.5% accuracy for lung cancer subtyping for the training set of tissues, per-patient. On the validation set of tissues, 100% accuracy for lung cancer diagnosis and 94.1% accuracy for lung cancer subtyping were achieved. When tested on the FNA samples, 100% diagnostic accuracy and 87.5% accuracy on subtyping were achieved per-slide. CONCLUSIONS: DESI-MSI can be useful as an ancillary technique to conventional cytopathology for diagnosis and subtyping of non-small cell lung cancers.


Subject(s)
Adenocarcinoma/diagnosis , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Squamous Cell/diagnosis , Lung Neoplasms/diagnosis , Adenocarcinoma/pathology , Biopsy, Fine-Needle , Carcinoma, Non-Small-Cell Lung/classification , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Humans , Lung/pathology , Lung Neoplasms/classification , Lung Neoplasms/pathology , Spectrometry, Mass, Electrospray Ionization/methods
4.
J Vasc Interv Radiol ; 31(1): 169-175, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31537410

ABSTRACT

PURPOSE: To evaluate trifluoroacetic acid (TFA) as a theranostic chemical ablation agent and determine the efficacy of TFA for both noninvasive imaging and tissue destruction. MATERIALS AND METHODS: Fluorine-19 magnetic resonance imaging (19F-MRI) was optimized at 7 T using a custom-built volume coil. Fluorine images were acquired with both rapid acquisition with relaxation enhancement and balanced steady-state free precession (bSSFP) sequences with varying parameters to determine the optimal sequence for TFA. The theranostic efficacy of chemical ablation was examined by injecting TFA (100 µL; 0.25, 0.5, 1.0, and 2.0M) into ex vivo porcine liver. 19F and proton MRI were acquired and superimposed to visualize distribution of TFA in tissue and quantify sensitivity. Tissue damage was evaluated with gross examination, histology, and fluorescence microscopy. RESULTS: The optimal 19F-MRI sequence was found to be bSSFP with a repetition time of 2.5 ms and flip angle of 70°. The minimum imageable TFA concentration was determined to be 6.7 ± 0.5 mM per minute of scan time (0.63×0.63×5.00 mm voxel), and real-time imaging (temporal resolution of at least 1 s-1) was achieved with 2M TFA both in vitro and in ex vivo tissue. TFA successfully coagulated tissue, and damage was locally confined. In addition to hepatic cord disruption, cytoskeletal collapse and chromatin clumping were observed in severely damaged areas in tissues treated with 0.5M or higher TFA concentrations. CONCLUSIONS: TFA was determined to be a theranostic agent for chemical ablation of solid tissue. Ablation was both efficacious and imageable in ex vivo healthy tissue, even at low concentrations or with high temporal resolution.


Subject(s)
Ablation Techniques , Liver/surgery , Trifluoroacetic Acid/administration & dosage , Ablation Techniques/adverse effects , Animals , Fluorine/administration & dosage , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging, Cine , Sus scrofa , Trifluoroacetic Acid/toxicity
5.
Int J Hyperthermia ; 37(1): 356-365, 2020.
Article in English | MEDLINE | ID: mdl-32308071

ABSTRACT

Background: Thermoembolization presents a unique treatment alternative for patients diagnosed with hepatocellular carcinoma. The approach delivers a reagent that undergoes an exothermic chemical reaction and combines the benefits of embolic as well as thermal- and chemical-ablative therapy modalities. The target tissue and vascular bed are subjected to simultaneous hyperthermia, ischemia, and chemical denaturation in a single procedure. To guide optimal delivery, we developed a mathematical model for understanding the competing diffusive and convective effects observed in thermoembolization delivery protocols.Methods: A mixture theory formulation was used to mathematically model thermoembolization as chemically reacting transport of an electrophile, dichloroacetyl chloride (DCACl), within porous living tissue. Mass and energy transport of each relevant constituent are considered. Specifically, DCACl is injected into the vessels and exothermically reacts with water in the blood or tissue to form dichloroacetic acid and hydrochloric acid. Neutralization reactions are assumed instantaneous in this approach. We validated the mathematical model predictions of temperature using MR thermometry of the thermoembolization procedure performed in ex vivo kidney.Results: Mathematical modeling predictions of tissue death were highly dependent on the vascular geometry, injection pressure, and intrinsic amount of exothermic energy released from the chemical species, and were able to recapitulate the temperature distributions observed in MR thermometry.Conclusion: These efforts present a first step toward formalizing a mathematical model for thermoembolization and are promising for providing insight for delivery protocol optimization. While our approach captured the observed experimental temperature measurements, larger-scale experimental validation is needed to prioritize additional model complexity and fidelity.


Subject(s)
Embolization, Therapeutic/methods , Models, Theoretical , Humans
6.
Int J Hyperthermia ; 36(1): 730-738, 2019.
Article in English | MEDLINE | ID: mdl-31362538

ABSTRACT

Purpose: MR temperature imaging (MRTI) was employed for visualizing the spatiotemporal evolution of the exotherm of thermoembolization, an investigative transarterial treatment for solid tumors. Materials and methods: Five explanted kidneys were injected with thermoembolic solutions, and monitored by MRTI. In three nonselective experiments, 5 ml of 4 mol/l dichloroacetyl chloride (DCA-Cl) solution in a hydrocarbon vehicle was injected via the main renal artery. For two of these three, MRTI temperature data were compared to fiber optic thermal probes. Another two kidneys received selective injections, treating only portions of the kidneys with 1 ml of 2 mol/l DCA-Cl. MRTI data were acquired and compared to changes in pre- and post-injection CT. Specimens were bisected and photographed for gross pathology 24 h post-procedure. Results: MRTI temperature estimates were within ±1 °C of the probes. In experiments without probes, MRTI measured increases of 30 °C. Some regions had not reached peak temperature by the end of the >18 min acquisition. MRTI indicated the initial heating occurred in the renal cortex, gradually spreading more proximally toward the main renal artery. Gross pathology showed the nonselective injection denatured the entire kidney whereas in the selective injections, only the treated territory was coagulated. Conclusion: The spatiotemporal evolution of thermoembolization was visualized for the first time using noninvasive MRTI, providing unique insight into the thermodynamics of thermoembolization. Précis Thermoembolization is being investigated as a novel transarterial treatment. In order to begin to characterize delivery of this novel treatment modality and aid translation from the laboratory to patients, we employ MR temperature imaging to visualize the spatiotemporal distribution of temperature from thermoembolization in ex vivo tissue.


Subject(s)
Embolization, Therapeutic , Magnetic Resonance Imaging , Thermography , Animals , Kidney/diagnostic imaging , Renal Artery/diagnostic imaging , Swine , Temperature
7.
BMC Genomics ; 19(1): 616, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30111282

ABSTRACT

BACKGROUND: The leaves of tea plants (Camellia sinensis) are used to produce tea, which is one of the most popular beverages consumed worldwide. The nutritional value and health benefits of tea are mainly related to three abundant characteristic metabolites; catechins, theanine and caffeine. Weighted gene co-expression network analysis (WGCNA) is a powerful system for investigating correlations between genes, identifying modules among highly correlated genes, and relating modules to phenotypic traits based on gene expression profiling. Currently, relatively little is known about the regulatory mechanisms and correlations between these three secondary metabolic pathways at the omics level in tea. RESULTS: In this study, levels of the three secondary metabolites in ten different tissues of tea plants were determined, 87,319 high-quality unigenes were assembled, and 55,607 differentially expressed genes (DEGs) were identified by pairwise comparison. The resultant co-expression network included 35 co-expression modules, of which 20 modules were significantly associated with the biosynthesis of catechins, theanine and caffeine. Furthermore, we identified several hub genes related to these three metabolic pathways, and analysed their regulatory relationships using RNA-Seq data. The results showed that these hub genes are regulated by genes involved in all three metabolic pathways, and they regulate the biosynthesis of all three metabolites. It is notable that light was identified as an important regulator for the biosynthesis of catechins. CONCLUSION: Our integrated omics-level WGCNA analysis provides novel insights into the potential regulatory mechanisms of catechins, theanine and caffeine metabolism, and the identified hub genes provide an important reference for further research on the molecular biology of tea plants.


Subject(s)
Camellia sinensis/genetics , Camellia sinensis/metabolism , Caffeine/metabolism , Camellia sinensis/chemistry , Catechin/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Glutamates/metabolism , High-Throughput Nucleotide Sequencing/methods , Metabolic Networks and Pathways , Plant Leaves/genetics , Plant Leaves/metabolism , Transcriptome
8.
Int J Hyperthermia ; 35(1): 559-567, 2018.
Article in English | MEDLINE | ID: mdl-30303437

ABSTRACT

OBJECTIVE: A molecular dynamics approach to understanding fundamental mechanisms of combined thermal and osmotic stress induced by thermochemical ablation (TCA) is presented. METHODS: Structural models of fibronectin and fibronectin bound to its integrin receptor provide idealized models for the effects of thermal and osmotic stress in the extracellular matrix. Fibronectin binding to integrin is known to facilitate cell survival. The extracellular environment produced by TCA at the lesion boundary was modelled at 37 °C and 43 °C with added sodium chloride (NaCl) concentrations (0, 40, 80, 160, and 320 mM). Atomistic simulations of solvated proteins were performed using the GROMOS96 force field and TIP3P water model. Computational results were compared with the results of viability studies of human hepatocellular carcinoma (HCC) cell lines HepG2 and Hep3B under matching thermal and osmotic experimental conditions. RESULTS: Cell viability was inversely correlated with hyperthermal and hyperosmotic stresses. Added NaCl concentrations were correlated with a root mean square fluctuation increase of the fibronectin arginylglycylaspartic acid (RGD) binding domain. Computed interaction coefficients demonstrate preferential hydration of the protein model and are correlated with salt-induced strengthening of hydrophobic interactions. Under the combined hyperthermal and hyperosmotic stress conditions (43 °C and 320 mM added NaCl), the free energy change required for fibronectin binding to integrin was less favorable than that for binding under control conditions (37 °C and 0 mM added NaCl). CONCLUSION: Results quantify multiple measures of structural changes as a function of temperature increase and addition of NaCl to the solution. Correlations between cell viability and stability measures suggest that protein aggregates, non-functional proteins, and less favorable cell attachment conditions have a role in TCA-induced cell stress.


Subject(s)
Fever/physiopathology , Molecular Dynamics Simulation , Osmotic Pressure/physiology , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular
9.
J Org Chem ; 82(14): 7637-7642, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28650165

ABSTRACT

Efficient synthesis of 1,3,4-oxadiazole-2(3H)-one was achieved by CsF/18-crown-6 mediated 1,3-dipolar cycloaddition of nitrile imine and 2.0 MPa of CO2. CsF/18-crown-6 played a key role in enhancing the reactivity of CO2 as a 1,3-dipolarophile. The practical utility of this transition-metal-free approach to 1,3,4-oxadiazole-2(3H)-one is highlighted by the convenient synthesis of a commercial herbicide Oxadiazon and a MAO B inhibitor.

10.
Chemistry ; 22(48): 17156-17159, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27699907

ABSTRACT

A straightforward and transition-metal-free approach for the efficient synthesis of α-arylglycine derivatives from aromatic imines and carbon dioxide was enabled by an umpolung carboxylation reaction. Various substituted diphenylmethimines underwent the carboxylation smoothly with carbon dioxide in the presence of potassium tert-butoxide and 18-crown-6 to give the corresponding carboxylated products in good to high yields. Besides the enhancement of the solubility of potassium tert-butoxide in THF, 18-crown-6 also plays key roles in suppressing the reverse protonation or 1, 3-proton shift isomerization as well as by stabilizing the carboxylated intermediate.

11.
Semin Intervent Radiol ; 40(6): 491-496, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38274220

ABSTRACT

Cryoablation is commonly used in the kidney, lung, breast, and soft tissue, but is an uncommon choice in the liver where radiofrequency ablation (RFA) and microwave ablation (MWA) predominate. This is in part for historical reasons due to serious complications that occurred with open hepatic cryoablation using early technology. More current technology combined with image-guided percutaneous approaches has ameliorated these issues and allowed cryoablation to become a safe and effective thermal ablation modality for treating liver tumors. Cryoablation has several advantages over RFA and MWA including the ability to visualize the ice ball, minimal procedural pain, and strong immunomodulatory effects. This article will review the current literature on cryoablation of primary and secondary liver tumors, with a focus on efficacy, safety, and immunogenic potential. Clinical scenarios when it may be more beneficial to use cryoablation over heat-based ablation in the liver, as well as directions for future research, will also be discussed.

12.
Chemosphere ; 270: 129486, 2021 May.
Article in English | MEDLINE | ID: mdl-33418225

ABSTRACT

Oxidation of a commonly-used ß-lactam pharmaceutical, cefoperazone (CFPZ), was systematically investigated by anodic oxidation (AO), AO in presence of H2O2 electro-generation (AO-H2O2) and electro-Fenton (EF) processes with an activated carbon fiber cathode from the biodegradability viewpoint. The degradation and mineralization rates increased in a sequence of AO < AO-H2O2 < EF. Even CPFZ could be efficiently degraded in EF process, achieving complete CFPZ mineralization was rather difficult. Thereby, the biodegradability of the effluent after electrochemical pretreatment was examined to test the feasibility of the combination of electrochemical and biological processes. The results suggested that compared with AO and AO-H2O2, EF process could effectively transform the non-biodegradable CFPZ into biocompatible materials with a high BOD5/COD value (0.33 after 720 min), allowing the possible biotreatment for further remediation. This behavior was relatively accorded with the average oxidation state (AOS) results, evidencing the potential of EF process in enhancing the biodegradability of CFPZ. The determination of inorganic ions revealed that N in CFPZ molecular was oxidized into NH4+ and NO3- ions in EF process. Oxalic, succinic, oxamic, fumaric and formic acids were also formed. Besides, six aromatic by-products were qualified and a possible pathway involving hydrolysis, hydroxylation and decarboxylation during CFPZ mineralization was proposed.


Subject(s)
Biological Phenomena , Water Pollutants, Chemical , Anti-Bacterial Agents , Cefoperazone , Electrodes , Hydrogen Peroxide , Oxidation-Reduction
13.
PET Clin ; 15(1): 45-53, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31735301

ABSTRACT

Positron emission tomography (PET) is an advanced functional imaging modality in oncology care for the diagnosis, staging, prognostication, and surveillance of numerous malignancies. PET can also offer considerable advantages for target volume delineation as part of radiation treatment planning. In this review, data and clinical practice from 6 general oncology disease sites are assessed to descriptively evaluate the role of PET in target volume delineation. Also highlighted are several specific and practical utilities for PET imaging in radiation treatment planning. Publication of several ongoing prospective trials in the future may further expand the utility of PET for target delineation and patient care.


Subject(s)
Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Fiducial Markers , Humans , Neoplasm Staging , Neoplasms/drug therapy , Neoplasms/pathology , Positron Emission Tomography Computed Tomography/methods , Tumor Burden
14.
J Mass Spectrom ; 55(4): e4477, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31804009

ABSTRACT

Hepatocellular carcinoma is a growing worldwide problem with a high mortality rate. This malignancy does not respond well to chemotherapy, and most patients present late in their disease at which time surgery is no longer an option. Over the past three decades, minimally invasive methods have evolved to treat unresectable disease and prolong survival. Intra-arterial embolization techniques are used for large or multiple tumors but have distressingly high levels of local recurrence and can be costly to implement. A new method called thermoembolization was recently reported, which destroys target tissue by combining reactive exothermic chemistry with an extreme local change in pH and ischemia. Described herein are experiments performed using this technique in vivo in a swine model. A microcatheter was advanced under fluoroscopic guidance into a branch of the hepatic artery to deliver a targeted dose of dichloroacetyl chloride dissolved in ethiodized oil into the liver. The following day, the animals were imaged by computed tomography and euthanized. Assessing the reaction product distribution and establishing a correlation with the effects are important for understanding the effects. This presented a significant challenge, however, as the reagent used does not contain a chromophore and is not otherwise readily detectable. Mass spectrometry imaging was employed to determine spatial distribution in treated samples. Additional insights on the biology were obtained by correlating the results with histology, immunohistochemistry, and immunofluorescence. The results are encouraging and may lead to a therapy with less local recurrence and improved overall survival for patients with this disease.


Subject(s)
Acetates/pharmacology , Embolization, Therapeutic/methods , Liver/diagnostic imaging , Tandem Mass Spectrometry/methods , Acetates/administration & dosage , Animals , Contrast Media/pharmacokinetics , Embolization, Therapeutic/instrumentation , Hepatic Artery , Hydrogen-Ion Concentration , Liver/blood supply , Liver/drug effects , Liver/pathology , Necrosis , Swine , Vascular Access Devices
15.
J Immunother Cancer ; 8(1)2020 Jan.
Article in English | MEDLINE | ID: mdl-31996395

ABSTRACT

BACKGROUND: This study compared response rates and outcomes of combined radiotherapy and immunotherapy (iRT) based on the type of checkpoint inhibitor (anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) vs antiprogrammed death-1 (PD1)) for metastatic non-small cell lung cancer (mNSCLC). METHODS: We retrospectively reviewed two prospective trials of radiation combined with anti-CTLA4 or anti-PD1 for patients with mNSCLC. Patients undergoing non-salvage stereotactic body radiation therapy (SBRT) to lung sites were selected from both trials and grouped by the immunotherapeutic compound received. Endpoints included in-field and out-of-field response rates, and overall response rate (complete or partial response) (all by response evaluation criteria in solid tumors). Progression-free survival (PFS) and overall survival (OS) were estimated with the Kaplan-Meier method. RESULTS: Median follow-up times for the 33 patients (n=17 SBRT+anti-CTLA4, n=16 SBRT+anti-PD1) were 19.6 and 19.9 months. Response rates for out-of-field lesions were similar between anti-PD1 (37%) and anti-CTLA4 (24%) (p=0.054). However, global response rates for all lesions were 24% anti-CTLA4 vs 56% anti-PD1 (p=0.194). The PFS was 76% for anti-CTLA4 vs 94% anti-PD1 at 3 months, 52% vs 87% at 6 months, 31% vs 80% at 12 months, and 23% vs 63% at 18 months (p=0.02). Respective OS values were 76% vs 87% at 6 months, 47% vs 80% at 12 months, and 39% vs 66% at 18 months (p=0.08). CONCLUSIONS: Both anti-CTLA4 and anti-PD1 agents prompt a similar degree of in-field and out-of-field responses after iRT, although the global response rate and PFS were statistically higher in the anti-PD1 cohort. Further dedicated study and biological mechanistic assessment is required. TRIAL REGISTRATION NUMBERS: NCT02239900 and NCT02444741.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Radiosurgery/methods , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Chemoradiotherapy , Clinical Trials as Topic , Female , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Metastasis , Prospective Studies , Retrospective Studies , Survival Rate , Treatment Outcome
16.
J Steroid Biochem Mol Biol ; 198: 105552, 2020 04.
Article in English | MEDLINE | ID: mdl-31783153

ABSTRACT

In humans and other primates, 1,25(OH)2vitamin D3 regulates the expression of the cathelicidin antimicrobial peptide (CAMP) gene via toll-like receptor (TLR) signaling that activates the vitamin D pathway. Mice and other mammals lack the vitamin D response element (VDRE) in their CAMP promoters. To elucidate the biological importance of this pathway, we generated transgenic mice that carry a genomic DNA fragment encompassing the entire human CAMP gene and crossed them with Camp knockout (KO) mice. We observed expression of the human transgene in various tissues and innate immune cells. However, in mouse CAMP transgenic macrophages, TLR activation in the presence of 25(OH)D3 did not induce expression of either CAMP or CYP27B1 as would normally occur in human macrophages, reinforcing important species differences in the actions of vitamin D. Transgenic mice did show increased resistance to colonization by Salmonella typhimurium in the gut. Furthermore, the human CAMP gene restored wound healing in the skin of Camp KO mice. Topical application of 1,25(OH)2vitamin D3 to the skin of CAMP transgenic mice induced CAMP expression and increased killing of Staphylococcus aureus in a wound infection model. Our model can help elucidate the biological importance of the vitamin D-cathelicidin pathway in both pathogenic and non-pathogenic states.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Gene Expression Regulation/drug effects , Staphylococcal Infections/prevention & control , Vitamin D/pharmacology , Animals , Cholecalciferol/pharmacology , Female , Gene Expression Profiling , Humans , Immunity, Innate , Lipopolysaccharides , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Transgenic , Phagocytes/metabolism , Phagocytosis , Salmonella typhimurium , Signal Transduction , Skin/drug effects , Staphylococcal Infections/immunology , Staphylococcus aureus/drug effects , Transgenes , Vitamin D Response Element , Cathelicidins
17.
J Thorac Oncol ; 15(12): 1919-1927, 2020 12.
Article in English | MEDLINE | ID: mdl-32916308

ABSTRACT

INTRODUCTION: Few advancements in treating limited-stage SCLC (LS-SCLC) have been made in decades. We report here a phase 1/2 trial of concurrent chemoradiotherapy (CRT) and pembrolizumab. METHODS: This single-center, open-label phase 1/2 study recruited adults with LS-SCLC or other neuroendocrine tumors and good performance status (Eastern Cooperative Oncology Group ≤ 2). The primary end point was safety, as assessed by dose-limiting toxicities. Concurrent CRT consisted of etoposide and a platin with 45 Gy radiotherapy (30 twice daily). Prophylactic cranial irradiation (25 Gy, 10 fractions) was given at the physician's discretion. Pembrolizumab was started concurrently with CRT and continued for up to 16 cycles. The phase 1 portion consisted of a 3 + 3 design. Toxicity was assessed with Common Terminology Criteria for Adverse Events version 4.0. Secondary outcomes were progression-free survival, overall survival, and tumor response as measured by the immune-related response criteria. RESULTS: A total of 45 patients were screened, and 40 were enrolled. All completed radiation therapy and received greater than or equal to one cycle of pembrolizumab. A total of 27 (61%) received percutaneous coronary intervention. One dose-limiting toxicity was observed in the phase 1 portion. There were no grade 5 toxicities, but there were three grade 4 events (two neutropenia, one respiratory failure). Pneumonitis rate was 15% (three grade 2 and three grade 3). All 17 esophagitis events (42.5%) were grades 1 to 2. At median follow-up time of 23.1 months, the median progression-free survival time was 19.7 months (95% confidence interval: 8.8‒30.5) and the median overall survival time was 39.5 months (95% confidence interval: 8.0‒71.0). CONCLUSION: Concurrent CRT and pembrolizumab for LS-SCLC was well tolerated and yielded favorable outcomes, providing a basis for randomized studies.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemoradiotherapy , Cisplatin/therapeutic use , Humans , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy
18.
Cardiovasc Intervent Radiol ; 41(10): 1611-1617, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29872896

ABSTRACT

PURPOSE: Embolotherapies are commonly used for management of primary liver cancer. Explant studies of treated livers, however, reveal an untreated tumor in a high fraction of cases. To improve on this, we propose a new concept referred to as thermoembolization. In this technique, the embolic material reacts in local tissues. Highly localized heat energy is released simultaneously with the generation of acid in the target vascular bed. Combined with ischemia, this should provide a multiplexed attack. We report herein our initial results testing the feasibility of this method in vivo. MATERIALS AND METHODS: Institutional approval was obtained, and three outbred swine were treated in a segmental hepatic artery branch (right or left medial lobe) with thermoembolic material (100, 400, or 500 µL). Solutions (2 or 4 mol/L) of an acid chloride were made using ethiodized oil as the vehicle. Animals were housed overnight, scanned by CT, and euthanized. Necropsy samples of treated tissue were obtained for histologic analysis. RESULTS: All animals survived the procedure. Vascular stasis occurred rapidly in all cases despite the small volumes used. The lower concentration (2 mol/L) penetrated more distally than the 4 mol/L solution. At CT the following day, vascular casts of ethiodized oil were observed, indicating recanalization had not occurred. Histology specimens demonstrated coagulative necrosis centered on the vessel lumen extending for several hundred microns with a peripheral inflammatory infiltrate. CONCLUSIONS: Thermoembolization is a new technique for embolization with initial promise. However, results indicate much work must be done to optimize the technique.


Subject(s)
Dichloroacetic Acid/administration & dosage , Embolization, Therapeutic/methods , Hepatic Artery/pathology , Liver/pathology , Animals , Computed Tomography Angiography , Disease Models, Animal , Dose-Response Relationship, Drug , Ethiodized Oil/administration & dosage , Feasibility Studies , Hepatic Artery/diagnostic imaging , Humans , Liver/diagnostic imaging , Necrosis , Swine
19.
PLoS One ; 13(7): e0200471, 2018.
Article in English | MEDLINE | ID: mdl-30011300

ABSTRACT

RATIONALE: Advances in image-guided drug delivery for liver cancer have shown a significant survival benefit. However, incomplete treatment is common and residual disease is often found in explanted liver specimens. In addition, the need to treat a malignancy from multiple mechanisms at the same time for optimal outcomes is becoming more widely appreciated. To address this, we hypothesized that an exothermic chemical reaction could be performed in situ. Such a strategy could in principle combine several angles of attack, including ischemia, hyperthermia, acidic protein denaturation, and metabolic modulation of the local environment. METHODS: The University of Texas MD Anderson Cancer Center Institutional Animal Care and Use Committee approved this study. Outbred swine (25-35 kg, 5 control and 5 experimental) were treated under general anesthesia. Embolization was performed with coaxial microcatheter technique in a segmental hepatic arterial branch using either ethiodized oil as control or with thermoembolic solutionBlood samples were obtained before, immediately after, and the day following the procedure just before CT scans and euthanasia. Livers were explanted and samples were obtained for histologic analysis. RESULTS: All animals survived the procedure and laboratory values of the control and experimental groups remained within normal limits. The control group had a diffuse or cloudy pattern of attenuation on follow-up CT scan the day after, consistent with gradual antegrade sinusoidal transit of the embolic material. The experimental group had clearly defined vascular casts with some degree of peripheral involvement. At histology, the control group samples had the appearance of normal liver, whereas the experimental group had coagulative necrosis in small pale, punctate areas extending several hundred microns away from the treated vessels and a brisk inflammatory response just outside the margins. CONCLUSION: In situ chemistry via thermoembolization shows early promise as a fundamentally new tactic for image-guided therapy of solid tumors.


Subject(s)
Drug Delivery Systems/methods , Embolization, Therapeutic/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Animals , Drug Delivery Systems/instrumentation , Female , Liver/diagnostic imaging , Liver/metabolism , Liver Neoplasms/veterinary , Male , Swine , Swine Diseases/diagnostic imaging , Swine Diseases/drug therapy
20.
Article in English | MEDLINE | ID: mdl-25008764

ABSTRACT

The recent discovery that vitamin D regulates expression of the cathelicidin antimicrobial peptide gene has generated renewed interest in using vitamin D to fight infectious diseases. This review describes the historical use of vitamin D or its sources to treat infections, the mechanism of action through which vitamin D mediates its "antibiotic" effects, findings from epidemiological studies associating vitamin D deficiency with increased susceptibility to infection and clinical trials with vitamin D supplementation to treat or prevent infections. Further studies examining an association between vitamin D levels and cathelicidin expression are discussed. The role of cathelcidin throughout the course of infection from the initial encounter of the pathogen to the resolution of tissue damage and inflammation indicates that individuals need to maintain adequate levels of vitamin D for an optimal immune response. In addition, for treating infections, carefully designed randomized, clinical trials that are appropriately powered to detect modest effects, target populations that are severely deficient in vitamin D,and optimized dose, dosing frequency and safety are needed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Vitamin D/pharmacology , Antimicrobial Cationic Peptides/analysis , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Humans , Toll-Like Receptors/physiology , Vitamin D/analogs & derivatives , Vitamin D/blood , Cathelicidins
SELECTION OF CITATIONS
SEARCH DETAIL