Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Proc Natl Acad Sci U S A ; 120(3): e2203511120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36623186

ABSTRACT

Halting the global decline of migratory birds requires a better understanding of migration ecology. Stopover sites are a crucial yet understudied aspect of bird conservation, mostly due to challenges associated with understanding broad-scale patterns of transient habitat use. Here, we use a national network of weather radar stations to identify stopover hotspots and assess multiscale habitat associations of migratory landbirds across the eastern United States during autumn migration. We mapped seasonal bird densities over 5 y (2015 to 2019) from 60 radar stations covering 63.2 million hectares. At a coarse scale, we found that landbirds migrate across a broad front with small differences in migrant density between radar domains. However, relatively more birds concentrate along the Mississippi River and Appalachian Mountains. At a finer scale, we identified radar pixels that consistently harbored high densities of migrants for all 5 y, which we classify as stopover hotspots. Hotspot probability increased with percent cover of all forest types and decreased with percent cover of pasture and cultivated crops. Moreover, we found strong concentrating effects of deciduous forest patches within deforested regions. We also found that the prairie biome in the Midwest (now mostly cropland) is likely a migration barrier, with large concentrations of migrants at the prairie-forest boundary after crossing the agricultural Midwest. Overall, the broad-front migration pattern highlights the importance of locally based conservation efforts to protect stopover habitats. Such efforts should target forests, especially deciduous forests in highly altered landscapes. These findings demonstrate the value of multiscale habitat assessments for the conservation of migratory landbirds.


Subject(s)
Animal Migration , Ecosystem , Animals , United States , Seasons , Forests , Birds , Mississippi
2.
Nat Mater ; 23(9): 1208-1213, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38641696

ABSTRACT

Symmetry breaking in quantum materials is of great importance and can lead to non-reciprocal charge transport. Topological insulators provide a unique platform to study non-reciprocal charge transport due to their surface states, especially quantum Hall states under an external magnetic field. Here we report the observation of non-reciprocal charge transport mediated by quantum Hall states in devices composed of the intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S, which is attributed to asymmetric scattering between quantum Hall states and Dirac surface states. A giant non-reciprocal coefficient of up to 2.26 × 105 A-1 is found. Our work not only reveals the properties of non-reciprocal charge transport of quantum Hall states in topological insulators but also paves the way for future electronic devices.

3.
Insect Mol Biol ; 33(3): 283-292, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38411032

ABSTRACT

Although the study of many genes and their protein products is limited by the availability of high-quality antibodies, this problem could be solved by fusing a tag/reporter to an endogenous gene using a gene-editing approach. The type II bacterial CRISPR/Cas system has been demonstrated to be an efficient gene-targeting technology for many insects, including the oriental fruit fly Bactrocera dorsalis. However, knocking in, an important editing method of the CRISPR/Cas9 system, has lagged in its application in insects. Here, we describe a highly efficient homology-directed genome editing system for B. dorsalis that incorporates coinjection of embryos with Cas9 protein, guide RNA and a short single-stranded oligodeoxynucleotide donor. This one-step procedure generates flies carrying V5 tag (42 bp) in the BdorTRH gene. In insects, as in other invertebrates and in vertebrates, the neuronal tryptophan hydroxylase (TRH) gene encodes the rate-limiting enzyme for serotonin biosynthesis in the central nervous system. Using V5 monoclonal antibody, the distribution of TRH in B. dorsalis at different developmental stages was uncovered. Our results will facilitate the generation of insects carrying precise DNA inserts in endogenous genes and will lay foundation for the investigation of the neural mechanisms underlying the serotonin-mediated behaviour of B. dorsalis.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Tephritidae , Animals , Tephritidae/genetics , Tephritidae/metabolism , Tephritidae/growth & development , Gene Editing/methods , Gene Knock-In Techniques , Insect Proteins/genetics , Insect Proteins/metabolism
4.
Insect Mol Biol ; 2024 Oct 31.
Article in English | MEDLINE | ID: mdl-39482837

ABSTRACT

Deciding where to lay an egg is critical for the survival of insects' offspring. Compared with our understanding of the chemosensory assessment of egg-laying sites, the mechanisms of texture detection are largely unknown. Here, we show that Bactrocera dorsalis, a notoriously agricultural pest laying its eggs within ripening fruits, can discriminate substrate texture during the egg-laying process. Exposure to drugs targeting transient receptor potential vanilloid (TRPV) mechanosensory channels abolished their oviposition preference for hard textures. BdorNan and BdorIav are two members of the TRPV subfamily, and their transcripts were detected in the labellum, the foreleg tarsi and the ovipositor. Then, we successfully obtained knockout strains of each gene using the CRISPR/Cas9 technique. The results showed that BdorNan is required for the discrimination of stiffness difference. BdorIav knockout had no significant effect on the ability of B. dorsalis to choose harder substrates. Our study thus reveals that BdorNan plays a substantial role in the texture assessment of egg-laying behaviour in B. dorsalis.

5.
Nano Lett ; 23(3): 765-771, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36542799

ABSTRACT

Igniting interface magnetic ordering of magnetic topological insulators by building a van der Waals heterostructure can help to reveal novel quantum states and design functional devices. Here, we observe an interesting exchange bias effect, indicating successful interfacial magnetic coupling, in CrI3/MnBi2Te4 ferromagnetic insulator/antiferromagnetic topological insulator (FMI/AFM-TI) heterostructure devices. The devices originally exhibit a negative exchange bias field, which decays with increasing temperature and is unaffected by the back-gate voltage. When we change the device configuration to be half-covered by CrI3, the exchange bias becomes positive with a very large exchange bias field exceeding 300 mT. Such sensitive manipulation is explained by the competition between the FM and AFM coupling at the interface of CrI3 and MnBi2Te4, pointing to coverage-dependent interfacial magnetic interactions. Our work will facilitate the development of topological and antiferromagnetic devices.

6.
Glob Chang Biol ; 29(10): 2669-2680, 2023 05.
Article in English | MEDLINE | ID: mdl-36843496

ABSTRACT

Ongoing climate change has profoundly affected global biodiversity, but its impacts on populations across elevations remain understudied. Using mechanistic niche models incorporating species traits, we predicted ecophysiological responses (activity times, oxygen consumption and evaporative water loss) for lizard populations at high-elevation (<3600 m asl) and extra-high-elevation (≥3600 m asl) under recent (1970-2000) and future (2081-2100) climates. Compared with their high-elevation counterparts, lizards from extra-high-elevation are predicted to experience a greater increase in activity time and oxygen consumption. By integrating these ecophysiological responses into hybrid species distribution models (HSDMs), we were able to make the following predictions under two warming scenarios (SSP1-2.6, SSP5-8.5). By 2081-2100, we predict that lizards at both high- and extra-high-elevation will shift upslope; lizards at extra-high-elevation will gain more and lose less habitat than will their high-elevation congeners. We therefore advocate the conservation of high-elevation species in the context of climate change, especially for those populations living close to their lower elevational range limits. In addition, by comparing the results from HSDMs and traditional species distribution models, we highlight the importance of considering intraspecific variation and local adaptation in physiological traits along elevational gradients when forecasting species' future distributions under climate change.


Subject(s)
Climate Change , Lizards , Animals , Lizards/physiology , Acclimatization , Adaptation, Physiological , Ecosystem
7.
Chin Med Sci J ; 38(1): 38-48, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36851887

ABSTRACT

Electrocardiogram (ECG) is a low-cost, simple, fast, and non-invasive test. It can reflect the heart's electrical activity and provide valuable diagnostic clues about the health of the entire body. Therefore, ECG has been widely used in various biomedical applications such as arrhythmia detection, disease-specific detection, mortality prediction, and biometric recognition. In recent years, ECG-related studies have been carried out using a variety of publicly available datasets, with many differences in the datasets used, data preprocessing methods, targeted challenges, and modeling and analysis techniques. Here we systematically summarize and analyze the ECG-based automatic analysis methods and applications. Specifically, we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes. Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications. Finally, we elucidated some of the challenges in ECG analysis and provided suggestions for further research.


Subject(s)
Arrhythmias, Cardiac , Electrocardiography , Humans , Arrhythmias, Cardiac/diagnosis , Electrocardiography/methods , Algorithms
8.
Reprod Biol Endocrinol ; 17(1): 56, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31311554

ABSTRACT

BACKGROUND: To investigate the therapeutic effects of menstrual blood derived mesenchymal stem cells (MB-MSCs) combined with Bushen Tiaochong recipe (BSTCR) on epirubicin induced premature ovarian failure (POF) in mice. METHODS: Twenty-four female C57BL/6 mice of 6-8 weeks were intraperitoneally injected with epirubicin to induce POF, and then they were randomized into 4 groups of 6 mice each and treated with PBS, MB-MSCs, BSTCR, and MB-MSCs combined with BSTCR, respectively. Six mice of the same age were used as controls. Vaginal smear, TUNEL and hematoxylin-eosin staining were to observe estrous cycles, ovarian cell apoptosis and follicles. Enzyme-linked immunosorbent analysis determined serum estradiol, follicle-stimulating hormone (FSH) and anti-Müllerian hormone (AMH) levels. RT-qPCR and Western Blot analysis were to determine GADD45b, CyclinB1, CDC2 and pCDC2 expressions. RESULTS: Epirubicin treatment resulted in a decrease in the number of primordial, primary, secondary and antral follicles, an increase in the number of atretic follicles and ovarian cell apoptosis, a decrease in estradiol and AMH levels, an increase in FSH levels, and estrous cycle arrest. However, MB-MSCs combined with BSTCR rescued epirubicin induced POF through down-regulating GADD45b and pCDC2 expressions, and up-regulating CyclinB1 and CDC2 expressions. The combined treatment showed better therapeutic efficacy than BSTCR or MB-MSCs alone. CONCLUSIONS: MB-MSCs combined with BSTCR improved the ovarian function of epirubicin induced POF mice, which might be related to the inhibition of GADD45b expression and the promotion of CyclinB1 and CDC2 expressions. The combined treatment had better therapeutic efficacy than BSTCR or MB-MSCs alone.


Subject(s)
Antigens, Differentiation/metabolism , Estrus/blood , Fertility Preservation/methods , Mesenchymal Stem Cells , Primary Ovarian Insufficiency/chemically induced , Animals , Cell Cycle , Epirubicin , Female , Mesenchymal Stem Cell Transplantation , Mice, Inbred C57BL , Ovary/anatomy & histology , Ovary/physiology , Primary Ovarian Insufficiency/therapy
9.
Curr Biol ; 34(2): 235-244.e3, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38091989

ABSTRACT

Migratory landbirds in North America are experiencing dramatic population declines. Although considerable research and conservation attention have been directed toward these birds' breeding and wintering grounds, far less is known about the areas used as stopover sites during migration. To address this knowledge gap, we used 5 years of weather surveillance radar data to map seasonal stopover densities of landbirds across the eastern United States during spring and autumn migration. We identified stopover hotspots covering 2.47 million ha that consistently support high densities of migratory landbirds in spring or autumn. However, only 16.7% of these sites are hotspots in both seasons. The distribution of hotspots is shifted eastward in autumn compared with spring. Deciduous forest is the most important habitat type in both seasons, with deciduous forest fragments embedded in broadly deforested regions having the highest probability of being hotspots. The concentration of birds in these forest fragments is stronger in spring, especially in the agricultural Midwest. We found generally higher stopover densities in protected areas than in unprotected areas in both seasons. Nonetheless, only one-third of identified stopover hotspots have some sort of protected status, and more than half of these protected hotspots are subject to extractive uses. A well-distributed network of well-protected stopover areas, complementing conservation efforts on the breeding and wintering grounds, is essential to sustaining healthy populations of migratory landbirds in North America.


Subject(s)
Animal Migration , Ecosystem , Animals , United States , Seasons , Weather , Birds
10.
Nat Commun ; 15(1): 1126, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321046

ABSTRACT

Highly pathogenic avian influenza virus (HPAIV) A H5, particularly clade 2.3.4.4, has caused worldwide outbreaks in domestic poultry, occasional spillover to humans, and increasing deaths of diverse species of wild birds since 2014. Wild bird migration is currently acknowledged as an important ecological process contributing to the global dispersal of HPAIV H5. However, this mechanism has not been quantified using bird movement data from different species, and the timing and location of exposure of different species is unclear. We sought to explore these questions through phylodynamic analyses based on empirical data of bird movement tracking and virus genome sequences of clade 2.3.4.4 and 2.3.2.1. First, we demonstrate that seasonal bird migration can explain salient features of the global dispersal of clade 2.3.4.4. Second, we detect synchrony between the seasonality of bird annual cycle phases and virus lineage movements. We reveal the differing exposed bird orders at geographical origins and destinations of HPAIV H5 clade 2.3.4.4 lineage movements, including relatively under-discussed orders. Our study provides a phylodynamic framework that links the bird movement ecology and genomic epidemiology of avian influenza; it highlights the importance of integrating bird behavior and life history in avian influenza studies.


Subject(s)
Animal Migration , Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Birds , Influenza A virus/genetics , Influenza in Birds/transmission , Phylogeny , Poultry
11.
Nat Commun ; 14(1): 7446, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049435

ABSTRACT

As billions of nocturnal avian migrants traverse North America, twice a year they must contend with landscape changes driven by natural and anthropogenic forces, including the rapid growth of the artificial glow of the night sky. While airspaces facilitate migrant passage, terrestrial landscapes serve as essential areas to restore energy reserves and often act as refugia-making it critical to holistically identify stopover locations and understand drivers of use. Here, we leverage over 10 million remote sensing observations to develop seasonal contiguous United States layers of bird migrant stopover density. In over 70% of our models, we identify skyglow as a highly influential and consistently positive predictor of bird migration stopover density across the United States. This finding points to the potential of an expanding threat to avian migrants: peri-urban illuminated areas may act as ecological traps at macroscales that increase the mortality of birds during migration.


Subject(s)
Animal Migration , Light Pollution , Animals , United States , Birds , North America , Telemetry , Seasons
12.
Front Oncol ; 12: 1057186, 2022.
Article in English | MEDLINE | ID: mdl-36505774

ABSTRACT

Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemotherapy increase patient mortality. Accumulating evidence demonstrates that histone modifications play a key role in cancerization and progression. Histone deacetylases is associated with chromatin condensed structure and transcriptional repression and play a role in chromatin remodeling and epigenetics. Histone deacetylases are promising targets for therapeutic interventions intended to reverse aberrant epigenetic associated with cancer. Therefore, histone deacetylases inhibitors could be used as anti-cancer drugs. Preclinical studies have shown promising outcomes of histone deacetylases inhibitors in ovarian cancer while clinical trials have had mixed results and limited success as monotherapy. Therefore, combination therapy with different anticancer drugs for synergistic effects and newly selective histone deacetylases inhibitors development for lower toxicity are hot issues now. In this review, we summarize the latest studies on the classification and mechanisms of action of histone deacetylase and the clinical application of their inhibitors as monotherapy or combination therapy in ovarian cancer.

13.
Chemosphere ; 287(Pt 2): 132172, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34509006

ABSTRACT

The increasing presence of microplastics in marine environment is a critical issue and the plastic-metal contamination has received much attention. However, conventional methods for heavy metal determination are time-consuming, need sample pretreatments, require a strict operation environment, or have high limits of detection. In this study, heavy metals contaminated microplastics samples collected from a remote coral island were quantified and analyzed by using Laser-Induced Breakdown Spectroscopy (LIBS). The characters of the trace metals in microplastics were used to determine the sources of the contaminants, and the potential origins of the metals were demonstrated from the statistical analysis. LIBS is a facile and non-destructive trace analysis technique and the strategy led to rapid and multi-metals detection of individual samples. Heavy metals such as copper (Cu), lead (Pb), iron (Fe), cadmium (Cd), zinc (Zn), manganese (Mn), chromium (Cr) were detected and quantified in the individual microplastics samples. The findings showed that LIBS is a promising strategy for the characterization of microplastics and for the analysis of the source of heavy metals contaminants present in the microplastics particles.


Subject(s)
Metals, Heavy , Microplastics , Environmental Monitoring , Lasers , Metals, Heavy/analysis , Plastics , Spectrum Analysis
14.
Nat Commun ; 11(1): 3485, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641686

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Ecohealth ; 16(4): 647-658, 2019 12.
Article in English | MEDLINE | ID: mdl-29691680

ABSTRACT

Land-use change has transformed most of the planet. Concurrently, recent outbreaks of various emerging infectious diseases have raised great attention to the health consequences of anthropogenic environmental degradation. Here, we assessed the global impacts of habitat conversion and other land-use changes on community structures of infectious disease hosts and vectors, using a meta-analysis of 37 studies. From 331 pairwise comparisons of disease hosts/vectors in pristine (undisturbed) and disturbed areas, we found a decrease in species diversity but an increase in body size associated with land-use changes, potentially suggesting higher risk of infectious disease transmission in disturbed habitats. Neither host nor vector abundance, however, changed significantly following disturbance. When grouped by subcategories like disturbance type, taxonomic group, pathogen type and region, changes in host/vector community composition varied considerably. Fragmentation and agriculture in particular benefit host and vector communities and therefore might elevate disease risk. Our results indicate that while habitat disturbance could alter disease host/vector communities in ways that exacerbate pathogen prevalence, the relationship is highly context-dependent and influenced by multiple factors.


Subject(s)
Biodiversity , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Disease Susceptibility/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Disease Vectors , Ecosystem , Animals , Global Health , Risk Assessment
16.
ISA Trans ; 91: 78-89, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30782433

ABSTRACT

In this paper, a nonlinear partial-state feedback control is designed for a 3-DOF pantograph-catenary system by using backstepping approach, such that the contacting force of the closed-loop system is capable of tracking its reference profile. In the control design, the pantograph-catenary model is transformed into a triangular form, facilitating the utilization of backstepping. Derivatives of virtual controls in backstepping are calculated explicitly. A high-order differentiator is designed to estimate the unknown time derivatives of elasticity coefficient; and an observer is proposed to reconstruct the unmeasurable states. It can be proved theoretically that, with the proposed nonlinear partial-state feedback control, the tracking error of the contacting force is ultimately bounded with tunable ultimate bounds. Theoretical results are demonstrated by numerical simulations.

17.
Trends Ecol Evol ; 34(9): 781-788, 2019 09.
Article in English | MEDLINE | ID: mdl-31130317

ABSTRACT

Global conservation promotes solutions to different dimensions of threat and response: land-use change, climate change, pollution, and so forth. Countering each threat has its band of proponents who advocate for their cause as paramount, increasingly, given limited resources, by downplaying the relative importance of others. Not only does this encourage a compartmentalised view of the world, which is ecologically unsound, it allows politicians and others to cherry-pick responses in light of political expediency or local demands. We should instead aim to achieve win-win conservation strategies that address multiple threats to diversity acting at different timescales, as well as 'horizon threats', which occur at large scales and may be the most challenging conservation issues to address in both the present and the future.


Subject(s)
Biodiversity , Conservation of Natural Resources , Climate Change
18.
Stem Cell Res Ther ; 10(1): 4, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30606243

ABSTRACT

BACKGROUND: To explore the effect of mesenchymal stem cells isolated from menstrual blood (MB-MSCs) on epirubicin-induced damage to human ovarian granulosa cells (GCs) and its potential mechanisms. METHODS: The estradiol, progesterone, anti-Müllerian hormone, inhibin A, and inhibin B levels were determined using enzyme-linked immunosorbent assay. The proliferation of GCs was detected by Cell Counting Kit-8 assays. The cell cycle distribution was detected by propidiumiodide single staining. The apoptosis of GCs was determined using Annexin V and 7-AAD double staining. The differentially expressed genes of GCs were analyzed with Affymetrix Human Transcriptome Array 2.0 gene chip and verified with Western blot analysis. RESULTS: Epirubicin inhibited the secretion of estradiol, progesterone, anti-Müllerian hormone, inhibin A, and inhibin B and the proliferation of GCs; arrested these GCs in G2/M phase; and promoted the apoptosis of GCs. However, MB-MSCs repaired epirubicin-induced damage to GCs. Differentially expressed genes of GCs, Gadd45b, CyclinB1, and CDC2, were found by microarray and bioinformatics analysis. Western blot showed that epirubicin upregulated Gadd45b protein expression and downregulated CyclinB1 and CDC2 protein expression, while MB-MSCs downregulated Gadd45b protein expression and upregulated CyclinB1 and CDC2 protein expression. CONCLUSIONS: MB-MSCs repaired epirubicin-induced damage to GCs, which might be related to the inhibition of Gadd45b protein expression.


Subject(s)
Antigens, Differentiation/genetics , Epirubicin/adverse effects , Granulosa Cells/metabolism , Menstrual Cycle/drug effects , Mesenchymal Stem Cells/metabolism , Ovarian Follicle/metabolism , Cell Cycle , Female , Granulosa Cells/cytology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL