Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Small ; 20(13): e2307333, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37967329

ABSTRACT

Reducing the dark current of photodetectors is an important strategy for enhancing the detection sensitivity, but hampered by the manufacturing cost due to the need for controlling the complex material composition and processing intricate interface. This study reports a new single-component photochromic semiconductor, [(HDMA)4(Pb3Br10)(PhSQ)2]n (1, HDMA = dimethylamine cation, PhSQ = 1-(4-sulfophenyl)-4,4'-bipyridinium), by introducing a redox-active monosubstituted viologen zwitterion into inorganic semiconducting skeleton. It features yellow to green coloration after UV irradiation with the sharply dropping intrinsic conductivity of 14.6-fold, and the photodetection detection sensitivity gain successfully doubles. The reason of decreasing conductivity originates from the increasing the band gap of the inorganic semiconducting component and formation of Frenkel excitons with strong Coulomb interactions, thereby decreasing the concentration of thermally excited intrinsic carriers.

2.
Small ; 20(3): e2305711, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37697703

ABSTRACT

The typical chalcopyrite AgGaQ2 (Q = S, Se) are commercial infrared (IR) second-order nonlinear optical (NLO) materials; however, they suffer from unexpected laser-induced damage thresholds (LIDTs) primairy due to their narrow band gaps. Herein, what sets this apart from previously reported chemical substitutions is the utilization of an unusual cationic substitution strategy, represented by [[SZn4 ]S12 + [S4 Zn13 ]S24 + 11ZnS4 ⇒ MS12 + [M4 Cl]S24 + 11GaS4 ], in which the covalent Sx Zny units in the diamond-like sphalerite ZnS are synergistically replaced by cationic Mx Cly units, resulting in two novel salt-inclusion sulfides, M[M4 Cl][Ga11 S20 ] (M = A/Ba, A = K, 1; Rb, 2). As expected, the introduction of mixed cations in the GaS4 anionic frameworks of 1 and 2 leads to wide band gaps (3.04 and 3.01 eV), which exceeds the value of AgGaS2 , facilitating the improvement of high LIDTs (9.4 and 10.3 × AgGaS2 @1.06 µm, respectively). Furthermore, compounds 1 and 2 exhibit moderate second-harmonic generation intensities (0.84 and 0.78 × AgGaS2 @2.9 µm, respectively), mainly originating from the orderly packing tetrahedral GaS4 units. Importantly, this study demonstrates the successful application of the cationic substitution strategy based on diamond-like structures to provide a feasible chemical design insight for constructing high-performance NLO materials.

3.
Nano Lett ; 23(10): 4351-4358, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37156492

ABSTRACT

Luminescent metal halides have been exploited as a new class of X-ray scintillators for security checks, nondestructive inspection, and medical imaging. However, the charge traps and hydrolysis vulnerability are always detrimental to the three-dimensional ionic structural scintillators. Here, the two zero-dimensional organic-manganese(II) halide coordination complexes 1-Cl and 2-Br were synthesized for improvements in X-ray scintillation. The introduction of a polarized phosphine oxide can help to increase the stabilities, especially the self-absorption-free merits of these Mn-based hybrids. The X-ray dosage rate detection limits reached up to 3.90 and 0.81 µGyair/s for 1-Cl and 2-Br, respectively, superior to the medical diagnostic standard of 5.50 µGyair/s. The fabricated scintillation films were applied to radioactive imaging with high spatial resolutions of 8.0 and 10.0 lp/mm, respectively, holding promise for use in diagnostic X-ray medical imaging.

4.
Angew Chem Int Ed Engl ; 63(7): e202318026, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38157447

ABSTRACT

The study of facile-synthesis and low-cost X-ray scintillators with high light yield, low detection limit and high X-ray imaging resolution plays a vital role in medical and industrial imaging fields. However, the optimal balance between X-ray absorption, decay lifetime and excitonic utilization efficiency of scintillators to achieve high-resolution imaging is extremely difficult due to the inherent contradiction. Here two thermally activated delayed fluorescence (TADF)-actived coinage-metal clusters M6 S6 L6 (M=Ag or Cu) were synthesized by simple solvothermal reaction, where the cooperation of heavy atom-rich character and TADF mechanism supports strong X-ray absorption and rapid luminescent collection of excitons. Excitingly, Ag6 S6 L6 (SC-Ag) displays a high photoluminescence quantum yield of 91.6 % and scintillating light yield of 17420 photons MeV-1 , as well as a low detection limit of 208.65 nGy s-1 that is 26 times lower than the medical standard (5.5 µGy s-1 ). More importantly, a high X-ray imaging resolution of 16 lp/mm based on SC-Ag screen is demonstrated. Besides, rigid core skeleton reinforced by metallophilicity endows clusters M6 S6 L6 strong resistance to humidity and radiation. This work provides a new view for the design of efficient scintillators and opens the research door for silver clusters in scintillation application.

5.
Small ; 19(37): e2302088, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37144451

ABSTRACT

Cations that can regulate the configuration of anion group are greatly important but regularly unheeded. Herein, the structural transformation from 2D CS to 3D noncentrosymmetric (NCS, which is the prerequisite for second-order NLO effect) is rationally designed to newly afford two sulfides LiMGa8 S14 (M = Rb/Ba, 1; Cs/Ba, 2) by introducing the smallest alkali metal Li+ cation into the interlamination of 2D centrosymmetric (CS) RbGaS2 . The unusual frameworks of 1 and 2 are constructed from C2 -type [Ga4 S11 ] supertetrahedrons in a highly parallel arrangement. 1 and 2 display distinguished NLO performances, including strong phase-matchable second-harmonic generation (SHG) intensities (0.8 and 0.9 × AgGaS2 at 1910 nm), wide optical band gaps (3.24 and 3.32 eV), and low coefficient of thermal expansion for favorable laser-induced damage thresholds (LIDTs, 4.7, and 7.6 × AgGaS2 at 1064 nm), which fulfill the criteria of superior NLO candidates (SHG intensity >0.5 × AGS and band gap >3.0 eV). Remarkably, 1 and 2 melt congruently at 873.8 and 870.5 °C, respectively, which endows them with the potential of growing bulk crystals by the Bridgeman-Stockbarge method. This investigated system provides a new avenue for the structural evolution from layered CS to 3D NCS of NLO materials.

6.
Small ; 19(46): e2303847, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37464565

ABSTRACT

Chalcohalides not only keep the balance between the nonlinear optical (NLO) coefficient and wide band gap, but also provide a promising solution to achieve sufficient birefringence for phase-matching ability in NLO crystals. In this study, a novel chalcohalide, Cs4 Zn5 P6 S18 I2 (1) is successfully synthesized, by incorporating the highly electropositive Cs and the large electronegative I element into the zinc thiophosphate. Its 3D open framework features an edge-shared by distorted [ZnS4 ], ethanol-like [P2 S6 ], and unusual [ZnS2 I2 ] polyhedrons, which is inconsistent with the soft-hard-acids-bases theory. Remarkably, compound 1 simultaneously exhibits the large second-harmonic generation (SHG, 1.1×AgGaS2 , @1.3 µm) and a wide band gap (3.75 eV) toward a high laser-induced damage threshold (16.7×AgGaS2 , @1.06 µm), satisfying the rigorous requirements for a prominent infrared NLO material with concurrent SHG intensity (≥0.5×AGS) and band gap (≥3.5 eV). Moreover, to the best of the knowledge, the experimental result shows that phase 1 has the largest birefringence (0.108, @546 nm) in chalcohalide and meets phase-matching behavior demand originating from the polarizable anisotropy of NLO-functional motifs. This finding may provide great opportunities for designing birefringent chalcohalides.

7.
Small ; 19(42): e2302492, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37154205

ABSTRACT

Anisotropic charge transport plays a pivotal role in clarifying the conductivity mechanism in direct X-ray detection to improve the detection sensitivity. However, the anisotropic photoelectric effect of semiconductive single crystal responsive to X-ray is still lacking of theoretical and experimental proof. The semiconductive coordination polymers (CPs) with designable structures, adjustable functions, and high crystallinity provide a suitable platform for exploring the anisotropic conductive mechanism. Here,the study first reveals a 1D conductive transmission path for direct X-ray detection from the perspective of structural chemistry. The semiconductive copper(II)-based CP 1 single crystal detector exhibits unique anisotropic X-ray detection performance. Along the 1D π-π stacking direction, the single crystal device (1-SC-a) shows a superior sensitivity of 2697.15 µCGyair -1  cm-2 and a low detection limit of 1.02 µGyair  s-1 among CPs-based X-ray detectors. This study provides beneficial guidance and deep insight for designing high-performance CP-based X-ray detectors.

8.
Angew Chem Int Ed Engl ; 62(48): e202311625, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37656120

ABSTRACT

The selectivity control of Pd nanoparticles (NPs) in the direct CO esterification with methyl nitrite toward dimethyl oxalate (DMO) or dimethyl carbonate (DMC) remains a grand challenge. Herein, Pd NPs are incorporated into isoreticular metal-organic frameworks (MOFs), namely UiO-66-X (X=-H, -NO2 , -NH2 ), affording Pd@UiO-66-X, which unexpectedly exhibit high selectivity (up to 99 %) to DMC and regulated activity in the direct CO esterification. In sharp contrast, the Pd NPs supported on the MOF, yielding Pd/UiO-66, displays high selectivity (89 %) to DMO as always reported with Pd NPs. Both experimental and DFT calculation results prove that the Pd location relative to UiO-66 gives rise to discriminated microenvironment of different amounts of interface between Zr-oxo clusters and Pd NPs in Pd@UiO-66 and Pd/UiO-66, resulting in their distinctly different selectivity. This is an unprecedented finding on the production of DMC by Pd NPs, which was previously achieved by Pd(II) only, in the direct CO esterification.

9.
Inorg Chem ; 61(2): 796-800, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34962374

ABSTRACT

Detection of oxygen though color change is highly desirable for rapid qualitative analysis like the case of pH test papers. This work demonstrates 3O2-assisted photoinduced color change of a new photochromic coordination compound [Zn(4-aminopyridine)2Cl2] (ZnaPyCl), which represents the first photochromic compound with a selective 3O2 detection ability. The compound underwent photoinduced intraligand charge separation and formed a stable diradical-like triplet species in the solid state or in frozen solution, accompanied by conversion of triplet oxygen to singlet oxygen.

10.
Inorg Chem ; 61(24): 8982-8986, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35658461

ABSTRACT

Two examples of efficient cathode-ray scintillation coordination polymers with good stability at high voltage were prepared by conjugating luminescent groups with d10 metal ions. The synergistic effect of inorganic metal and organic ligand suppresses the self-quenching of the conjugated luminescent groups and enhances the scintillation performance. This work provides new ideas for the design of new field-emission displays and cathode-ray scintillation materials.

11.
J Am Chem Soc ; 143(5): 2232-2238, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33522242

ABSTRACT

Charge-separated states with a lifetime scale of seconds or longer not only favor studies using various steady-state analysis techniques but are important for light-energy conversion and other applications. Through a steric-hindrance-induced method, unprecedented photoinduced generation of a partially charge separated (PCS) state with a lifetime of days has been detected in the "visual" mode during the decay of excited states to a commonly observed fully charge separated (FCS) state for viologen analogues. One pale yellow 4,4'-bipyridine-based metalloviologen compound, with an interannular dihedral angle of 1.84° in 4,4'-bipyridine, directly decays to the purple FCS state after photoexcitation. The other pale yellow compound, with a similar coordination framework but a larger interannular dihedral angle (33.74°), changes first to a yellow PCS state and then relaxes slowly (in the dark in Ar, ca. 2 days; 70 °C in Ar, ca. 1 h) to the purple FCS state. The two-step coloration phenomenon is unprecedented for viologen compounds and their analogues and also rather rare for other photochromic species. EPR and Raman data reveal that photoinduced charge separation first generates univalent zinc and radicals and then the received electron in Zn(I) slowly distributes further to 4,4'-bipyridine. Reduction of π-conjugation and a direct to indirect change in band gap account for the prolongation of the relaxation process and the capture of the PCS state. These findings help to understand and control decay processes of excited states and provide a potential design strategy for multicolor photochromism, light-energy conversion with high efficiency, or other applications.

12.
Inorg Chem ; 60(2): 560-564, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33411521

ABSTRACT

Photochromic open-framework compounds are of potential application in detection/sensors. The issue of improving the detection limits has received much attention. We synthesized a new open-framework Zn compound, namely, compound 1 ([Zn(MQ)(IPA)Cl]·5H2O) (MQ = N-methyl-4,4'-bipyridinium, IPA = m-phthalic acid), which showed a 1D channel structure by a cationic-π interaction. It is noteworthy that this compound is an effective detector for aniline though luminescence emission, which exhibited unprecedented detection limits in photochromic open-framework compounds.

13.
Inorg Chem ; 60(13): 9278-9281, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34142822

ABSTRACT

A high contrast of ∼67 times, exceeding those of all known photoswitching bulk quadratic nonlinear-optical materials, has been realized in a photochromic semiconductor, by the strategy of increasing electron-transfer efficiency and self-absorption.

14.
Inorg Chem ; 60(8): 5538-5544, 2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33830749

ABSTRACT

Photoresponse ranges of commercially prevailing photoelectric semiconductors, typically Si and InGaAs, are far from fully covering the whole solar spectrum (∼295-2500 nm), resulting in insufficient solar energy conversion or narrow wave bands for photoelectric detection. Recent studies have shown that infinite π-aggregation of viologen radicals can provide semiconductors with a photoelectric response range covering the solar spectrum. However, controlled assembly of an infinite π-aggregate is still a great challenge in material design. Through directional self-assembly of electron-transfer photoactive polycyclic ligands, two crystalline inorganic-organic hybrid photochromic viologen-based bismuth halide semiconductors, ((Me)3pytpy)[BiCl6]·2H2O [1; (Me)3pytpy = N,N',N″-trimethyl-2,4,6-tris(4-pyridyl)pyridine] and ((Me)3pytpy)[Bi2Cl9]·H2O (2), have been synthesized. They represent the first series of pytpy-based photochromic compounds. After photoinduced coloration, the conductivities of both 1 and 2 increased. The radical products have electron absorption bands in the range of 200-1600 nm, exceeding that of Si. Both the conductivity and the photocurrent intensity of 2 are stronger than those of 1, due to better planarity, tighter π-stacking, and higher degrees of overlap of ((Me)3pytpy)3+ cations. This study not only provides a new design idea for synthesizing radical-based multispectral photoelectric semiconductors but also enriches the family of electron-transfer photochromic compounds.

15.
Angew Chem Int Ed Engl ; 60(33): 18223-18230, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34114311

ABSTRACT

Similarities in sizes, shapes, and physical properties between carbon dioxide (CO2 ) and acetylene (C2 H2 ) make it a great challenge to separate the major impurity CO2 from products in C2 H2 production. The use of porous materials is an appealing path to replace current very costly and energy-consuming technologies, such as solvent extraction and cryogenic distillation; however, high CO2 /C2 H2 uptake ratio with minor adsorption of C2 H2 at standard pressure was only unexpectedly observed in scarce examples in recent years although the related research started early at 1950s, and general design strategies to realize this aim are still absent. This work has successfully developed an efficient PIET strategy and obtained the second highest CO2 /C2 H2 adsorption ratio for porous materials in a proof-of-concept MOF with a photochromism-active bipyridinium zwitterion. An unprecedented photocontrollable gate effect, owing to change of interannular dihedral after photoinduced generation of radical species, was also observed for the first time. These findings will inspire design and synthesis of porous materials for high efficient gas adsorption and separation.

16.
Angew Chem Int Ed Engl ; 60(21): 11799-11803, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33749981

ABSTRACT

Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantially but only distorted under laser. A general strategy of determining NLO FM is proposed by comparative studies of experimental electron density (ED) without and under the laser. The in situ experimental ED and wavefunction of typical NLO material LiB3 O5 (LBO) under dark and 360 and 1064 nm lasers are investigated. Compared with the initial state under dark, the ED of [B3 O5 ]- unit at functional states under laser irradiation exhibits remarkable changes of topological atomic and bond properties, confirming the NLO FM being [B3 O5 ]- . The work extracts for the first time the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms.

17.
J Am Chem Soc ; 142(24): 10641-10645, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32469217

ABSTRACT

Noncentrosymmetry (NCS) is a prerequisite for second-order nonlinear optical (NLO) materials. In this work, a new polycation-substitution-induced centrosymmetry (CS)-to-NCS transformation strategy was applied in CS RbGaS2, affording two novel NCS salt-inclusion chalcogenides: [ABa2Cl][Ga4S8] (A = Rb, 1; Cs, 2). Remarkably, they exhibit the key merits of both Vis and IR NLO candidates, including strong phase-matchable second harmonic generation intensities (10.4-15.3 × KH2PO4 at 1064 nm; 0.9-1.0 × AgGaS2 at 1910 nm), high laser-induced damage thresholds (11-12 × AgGaS2), and a wide transparent window. Their prominent NLO performances originate from the orderly packing of T2-supertetrahedral Ga4S10 motifs resulting from the template effect of acentric polycation [ClA2Ba3]7+. The CS-to-NCS transformation first realized by polycation-substitution-induced NLO-functional motif ordering provides an effective approach for designing new NLO materials.

18.
Angew Chem Int Ed Engl ; 59(12): 4856-4859, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-31654453

ABSTRACT

A large nonlinear optical (NLO) coefficient and a wide band gap are two crucial but contradictory parameters that are difficult to achieve simultaneously in a single infrared (IR) NLO compound. A salt-inclusion chalcogenide (SIC), Li[LiCs2 Cl][Ga3 S6 ] (1), was prepared that presents a nanosized tunnel framework constructed from monotype chalcogenide tetrahedra. Highly oriented covalent GaS4 tetrahedra in the host lead to a moderate second harmonic generation response (0.7 AgGaS2 ), and ionic guests effectively broaden the band gap to the widest value (4.18 eV) among all IR NLO chalcogenides, thereby achieving a remarkable balance between NLO efficiency and band gap.

19.
Chemistry ; 25(61): 13972-13976, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31486561

ABSTRACT

2,4,6-Tri(4-pyridyl)-1,3,5-triazine (tpt) is a widely used ligand for functional coordination compounds. In this work, tpt has shown unprecedented photochromism in the crystalline state. Experimental and theoretical data has revealed that the photocoloration of tpt very likely originates from intramolecular charge separation and the formation of a triplet diradical product. This finding demonstrates a new simple, neutral photochromic molecule and endows the tpt molecule and related compounds with potential optical applications.

20.
Angew Chem Int Ed Engl ; 58(28): 9475-9478, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31070835

ABSTRACT

Breaking the intrinsic rule of semiconductors that conductivity increases with increase of temperature and realizing a dramatic dropping of conductivity at high temperature may arouse new intriguing applications, such as circuit overload or over-temperature protecting. This goal has now been achieved through T-type electron-transfer photochromism of one organic semiconductor assembled by intermolecular cation⋅⋅⋅π interactions. Conductivity of the viologen-based model semiconductor (H2 bipy)(Hox)2 (H2 bipy=4,4'-bipyridin-1,1'-dium; ox=oxalate) increased by 2 orders of magnitude after photoinduced electron transfer (a record for photoswitchable organic semiconductors) and generation of radical cation⋅⋅⋅π interactions, and fell by approximately 81 % at 100 °C through reverse electron transfer and degeneration of the radical cation⋅⋅⋅π interactions. The model semiconductor has at least two different electron transfer pathways in the decoloration process.

SELECTION OF CITATIONS
SEARCH DETAIL