Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 304
Filter
Add more filters

Publication year range
1.
Small ; : e2405512, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233536

ABSTRACT

Effective electron supply to produce ammonia in photoelectrochemical nitrogen reduction reaction (PEC NRR) remains challenging due to the sluggish multiple proton-coupled electron transfer and unfavorable carrier recombination. Herein, InP quantum dots decorated with sulfur ligands (InP QDs-S2-) bound to MIL-100(Fe) as a benchmark catalyst for PEC NRR is reported. It is found that MIL-100(Fe) can combined with InP QDs-S2- via Fe─S bonds as bridge to facilitate the electron transfer by experimental results. The formation of Fe─S bonds can facilitate electron transfer from inorganic S2- ligands of InP QDs to the Fe metal sites of MIL-100(Fe) within 52 ps, ensuring a more efficient electron transfer and electron-hole separation confirmed by the time-resolved spectroscopy. More importantly, the process of photo-induced carrier transfer can be traced by in situ attenuated total reflection surface-enhanced infrared tests, certifying that the effective electron transfer can promote N≡N dissociation and N2 hydrogenation. As a result, InP QDs-S2-/MIL-100(Fe) exhibits prominent performance with an outstanding NH3 yield of 0.58 µmol cm-2 h-1 (3.09 times higher than that of MIL-100(Fe)). This work reveals an important ultrafast dynamic mechanism for PEC NRR in QDs modified metal-organic frameworks, providing a new guideline for the rational design of efficient MOFs photocathodes.

2.
Opt Lett ; 49(6): 1524-1527, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489441

ABSTRACT

Longitudinal detection of hemodynamic changes based on wearable devices is imperative for monitoring human healthcare. Photoacoustic effect is extremely sensitive to variations in hemoglobin. Therefore, wearable photoacoustic devices are apt to monitor human healthcare via the observation of hemodynamics. However, the bulky system and difficulties in miniaturizing and optimizing the imaging interface restrict the development of wearable photoacoustic devices for human use. In this study, we developed a wearable photoacoustic watch with a fully integrated system in a backpack that has a size of 450 mm × 300 mm × 200 mm and an affordable weight of 7 kg for an adult to wear. The watch has a size of 43 mm × 30 mm × 24 mm, weighs 40 g, and features a lateral resolution of 8.7 µm, a field of view (FOV) of 3 mm in diameter, and a motorized adjustable focus for optimizing the imaging plane for different individuals. We recruited volunteers to wear the watch and the backpack and performed in vivo imaging of the vasculatures inside human wrists under the conditions of walking and human cuff occlusion to observe hemodynamic variations during different physiological states. The results suggest that the focus shifting capability of the watch makes it suitable for different individuals, and the compact and stable design of the entire system allows free movements of humans.


Subject(s)
Photoacoustic Techniques , Wearable Electronic Devices , Adult , Humans , Diagnostic Imaging , Spectrum Analysis , Hemodynamics
3.
Opt Lett ; 49(4): 798-801, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359185

ABSTRACT

Optical resolution photoacoustic microscopy (OR-PAM) is a hybrid imaging method for visualizing organelles due to the high spatial resolution and abundant optical contrast. Usually, OR-PAM employs high numerical aperture (NA) objectives and high-frequency ultrasonic detectors to resolve three-dimensional (3D) microstructures of cells. Expansion microscopy (ExM) provides a nanoscale resolution by isotropically enlarging cells instead of utilizing ultrahigh NA objectives. In this Letter, we report the development of photoacoustic expansion microscopy (PA-ExM) that combines the advantages of OR-PAM and ExM for 3D organelle imaging using near-infrared light. We evaluate the performance of PA-ExM using label-free melanoma cells, where the image quality of melanosome distributions in expanded cells using a 40× objective is comparable to that of unexpanded cells using an oil-immersed 100× objective. The results suggest that PA-ExM possesses the great potential to study organelles.


Subject(s)
Microscopy , Photoacoustic Techniques , Microscopy/methods , Melanosomes , Photoacoustic Techniques/methods , Spectrum Analysis , Multimodal Imaging
4.
Exp Dermatol ; 33(7): e15133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045898

ABSTRACT

The management of hypertrophic scars (HSs), characterized by excessive collagen production, involves various nonsurgical and surgical interventions. However, the absence of a well-defined molecular mechanism governing hypertrophic scarring has led to less-than-ideal results in clinical antifibrotic treatments. Therefore, our study focused on the role of decorin (DCN) and its regulatory role in the TGF-ß/Smad signalling pathway in the development of HSs. In our research, we observed a decrease in DCN expression within hypertrophic scar tissue and its derived cells (HSFc) compared to that in normal tissue. Then, the inhibitory effect of DCN on collagen synthesis was confirmed in Fc and HSFc via the detection of fibrosis markers such as COL-1 and COL-3 after the overexpression and knockdown of DCN. Moreover, functional assessments revealed that DCN suppresses the proliferation, migration and invasion of HSFc. We discovered that DCN significantly inhibits the TGF-ß1/Smad3 pathway by suppressing TGF-ß1 expression, as well as the formation and phosphorylation of Smad3. This finding suggested that DCN regulates the synthesis of collagen-based extracellular matrix and fibrosis through the TGF-ß1/Smad3 pathway.


Subject(s)
Cicatrix, Hypertrophic , Decorin , Smad3 Protein , Transforming Growth Factor beta , Decorin/genetics , Decorin/metabolism , Cicatrix, Hypertrophic/metabolism , Cicatrix, Hypertrophic/pathology , Transforming Growth Factor beta/metabolism , Signal Transduction , Gene Knockdown Techniques , Humans , Smad3 Protein/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Extracellular Matrix/metabolism , Cell Proliferation , Cell Movement
5.
BMC Med Res Methodol ; 24(1): 41, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365610

ABSTRACT

BACKGROUND: Missing data is frequently an inevitable issue in cohort studies and it can adversely affect the study's findings. We assess the effectiveness of eight frequently utilized statistical and machine learning (ML) imputation methods for dealing with missing data in predictive modelling of cohort study datasets. This evaluation is based on real data and predictive models for cardiovascular disease (CVD) risk. METHODS: The data is from a real-world cohort study in Xinjiang, China. It includes personal information, physical examination data, questionnaires, and laboratory biochemical results from 10,164 subjects with a total of 37 variables. Simple imputation (Simple), regression imputation (Regression), expectation-maximization(EM), multiple imputation (MICE) , K nearest neighbor classification (KNN), clustering imputation (Cluster), random forest (RF), and decision tree (Cart) were the chosen imputation methods. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are utilised to assess the performance of different methods for missing data imputation at a missing rate of 20%. The datasets processed with different missing data imputation methods were employed to construct a CVD risk prediction model utilizing the support vector machine (SVM). The predictive performance was then compared using the area under the curve (AUC). RESULTS: The most effective imputation results were attained by KNN (MAE: 0.2032, RMSE: 0.7438, AUC: 0.730, CI: 0.719-0.741) and RF (MAE: 0.3944, RMSE: 1.4866, AUC: 0.777, CI: 0.769-0.785). The subsequent best performances were achieved by EM, Cart, and MICE, while Simple, Regression, and Cluster attained the worst performances. The CVD risk prediction model was constructed using the complete data (AUC:0.804, CI:0.796-0.812) in comparison with all other models with p<0.05. CONCLUSION: KNN and RF exhibit superior performance and are more adept at imputing missing data in predictive modelling of cohort study datasets.


Subject(s)
Algorithms , Cardiovascular Diseases , Humans , Cohort Studies , Machine Learning , Support Vector Machine , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology
6.
Acta Pharmacol Sin ; 45(1): 125-136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37684381

ABSTRACT

Acute kidney injury (AKI) is a worldwide public health problem characterized by the massive loss of tubular cells. However, the precise mechanism for initiating tubular cell death has not been fully elucidated. Here, we reported that phosphoglycerate mutase 5 (PGAM5) was upregulated in renal tubular epithelial cells during ischaemia/reperfusion or cisplatin-induced AKI in mice. PGAM5 knockout significantly alleviated the activation of the mitochondria-dependent apoptosis pathway and tubular apoptosis. Apoptosis inhibitors alleviated the activation of the mitochondria-dependent apoptosis pathway. Mechanistically, as a protein phosphatase, PGAM5 could dephosphorylate Bax and facilitate Bax translocation to the mitochondrial membrane. The translocation of Bax to mitochondria increased membrane permeability, decreased mitochondrial membrane potential and facilitated the release of mitochondrial cytochrome c (Cyt c) into the cytoplasm. Knockdown of Bax attenuated PGAM5 overexpression-induced Cyt c release and tubular cell apoptosis. Our results demonstrated that the increase in PGAM5-mediated Bax dephosphorylation and mitochondrial translocation was implicated in the development of AKI by initiating mitochondrial Cyt c release and activating the mitochondria-dependent apoptosis pathway. Targeting this axis might be beneficial for alleviating AKI.


Subject(s)
Acute Kidney Injury , Cytochromes c , Mice , Animals , Cytochromes c/metabolism , Phosphoglycerate Mutase/metabolism , bcl-2-Associated X Protein/metabolism , Apoptosis/physiology , Mitochondria/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Carrier Proteins/metabolism , Phosphoprotein Phosphatases/metabolism
7.
Acta Pharmacol Sin ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147900

ABSTRACT

The pyroptosis of renal tubular epithelial cells leads to tubular loss and inflammation and then promotes renal fibrosis. The transcription factor Krüppel-like factor 4 (KLF4) can bidirectionally regulate the transcription of target genes. Our previous study revealed that sustained elevation of KLF4 is responsible for the transition of acute kidney injury (AKI) into chronic kidney disease (CKD) and renal fibrosis. In this study, we explored the upstream mechanisms of renal tubular epithelial cell pyroptosis from the perspective of posttranslational regulation and focused on the transcription factor KLF4. Mice were subjected to unilateral ureteral obstruction (UUO) surgery and euthanized on D7 or D14 for renal tissue harvesting. We showed that the pyroptosis of renal tubular epithelial cells mediated by both the Caspase-1/GSDMD and Caspase-3/GSDME pathways was time-dependently increased in UUO mouse kidneys. Furthermore, we found that the expression of the transcription factor KLF4 was also upregulated in a time-dependent manner in UUO mouse kidneys. Tubular epithelial cell-specific Klf4 knockout alleviated UUO-induced pyroptosis and renal fibrosis. In Ang II-treated mouse renal proximal tubular epithelial cells (MTECs), we demonstrated that KLF4 bound to the promoter regions of Caspase-3 and Caspase-1 and directly increased their transcription. In addition, we found that ubiquitin-specific protease 11 (USP11) was increased in UUO mouse kidneys. USP11 deubiquitinated KLF4. Knockout of Usp11 or pretreatment with the USP11 inhibitor mitoxantrone (3 mg/kg, i.p., twice a week for two weeks before UUO surgery) significantly alleviated the increases in KLF4 expression, pyroptosis and renal fibrosis. These results demonstrated that the increased expression of USP11 in renal tubular cells prevents the ubiquitin degradation of KLF4 and that elevated KLF4 promotes inflammation and renal fibrosis by initiating tubular cell pyroptosis.

8.
BMC Nephrol ; 25(1): 48, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321419

ABSTRACT

PURPOSE: This study aimed to investigate the association between cytochrome P450 (CYP) 3A4*22 and cytochrome P450 oxidoreductase (POR)*28 variations and the pharmacokinetics of tacrolimus. METHODS: Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science (SCI), MEDLINE, and Embase were systematically searched from inception to August 2022. The outcomes were weight-adjusted daily dose and dose-adjusted trough concentration (C0/Dose). RESULTS: The study included 2931 renal transplant recipients from 18 publications. Weight-adjusted daily dose of CYP3A4*1/*1 carriers was 0.04 (WMD = 0.04, 95% CI: 0.02 to 0.06), 0.03 (WMD = 0.03, 95% CI: 0.02 to 0.05), 0.02 (WMD = 0.02, 95% CI: 0.01 to 0.03), or 0.02 mg/kg/day (WMD = 0.02, 95% CI: 0.00 to 0.04) higher than CYP3A4*22 carriers in Caucasians at 1 month, 3 months, 6 months, or 12 months post-transplantation. Conversely, C0/Dose was lower for CYP3A4*1/*1 carriers at 3 days (SMD = -0.35, 95% CI: -0.65 to -0.06), 1 month (SMD = -0.67, 95% CI: -1.16 to -0.18), 3 months (SMD = -0.60, 95% CI: -0.89 to -0.31), 6 months (SMD = -0.76, 95% CI: -1.49 to -0.04), or 12 months post-transplantation (SMD = -0.69, 95% CI: -1.37 to 0.00). Furthermore, C0/Dose of POR*1/*1 carriers was 22.64 (WMD = 22.64, 95% CI: 2.54 to 42.74) or 19.41 (ng/ml)/(mg/kg/day) (WMD = 19.41, 95% CI: 9.58 to 29.24) higher than POR*28 carriers in CYP3A5 expressers at 3 days or 7 days post-transplantation, and higher in Asians at 6 months post-transplantation (SMD = 0.96, 95% CI: 0.50 to 1.43). CONCLUSIONS: CYP3A4*22 variant in Caucasians restrains the metabolism of tacrolimus, while POR*28 variant in CYP3A5 expressers enhances the metabolism of tacrolimus for renal transplant recipients. However, further well-designed prospective studies are necessary to substantiate these conclusions given some limitations.


Subject(s)
Kidney Transplantation , Tacrolimus , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Immunosuppressive Agents , Prospective Studies , Polymorphism, Single Nucleotide , Transplant Recipients , Genotype
9.
Mar Drugs ; 22(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786605

ABSTRACT

Chemical investigation of marine fungus Nigrospora oryzae SYSU-MS0024 cultured on solid-rice medium led to the isolation of three new alkaloids, including a pair of epimers, nigrosporines A (1) and B (2), and a pair of enantiomers, (+)-nigrosporine C (+)-3, and (-)-nigrosporine C (-)-3, together with eight known compounds (4-11). Their structures were elucidated based on extensive mass spectrometry (MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopic analyses and compared with data in the literature. The absolute configurations of compounds 1-3 were determined by a combination of electronic circular dichroism (ECD) calculations, Mosher's method, and X-ray single-crystal diffraction technique using Cu Kα radiation. In bioassays, compound 2 exhibited moderate inhibition on NO accumulation induced by lipopolysaccharide (LPS) on BV-2 cells in a dose-dependent manner at 20, 50, and 100 µmol/L and without cytotoxicity in a concentration of 100.0 µmol/L. Moreover, compound 2 also showed moderate acetylcholinesterase (AChE) inhibitory activities with IC50 values of 103.7 µmol/L. Compound 5 exhibited moderate antioxidant activity with EC50 values of 167.0 µmol/L.


Subject(s)
Alkaloids , Ascomycota , Cholinesterase Inhibitors , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Animals , Mice , Ascomycota/chemistry , Cell Line , Nitric Oxide/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Molecular Structure , Acetylcholinesterase/metabolism , Magnetic Resonance Spectroscopy/methods , Lipopolysaccharides/pharmacology
10.
Nano Lett ; 23(22): 10171-10178, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37922456

ABSTRACT

Multiplexed quantification of low-abundance protein biomarkers in complex biofluids is important for biomedical research and clinical diagnostics. However, in situ sampling without perturbing biological systems remains challenging. In this work, we report a buoyant biosensor that enables in situ monitoring of protein analytes at attomolar concentrations with a 15 min temporal resolution. The buoyant biosensor implemented with fluorescent nanolabels enabled the ultrasensitive and multiplexed detection and quantification of cytokines. Implementing the biosensor in a digital manner (i.e., counting the individual nanolabels) further improves the low detection limit. We demonstrate that the biosensor enables the detection and quantification of the time-varying concentrations of cytokines (e.g., IL-6 and TNF-α) in macrophage culture media without perturbing the live cells. The easy-to-apply biosensor with attomolar sensitivity and multiplexing capability can enable an in situ analysis of protein biomarkers in various biofluids and tissues to aid in understanding biological processes and diagnosing and treating diverse diseases.


Subject(s)
Biosensing Techniques , Cytokines , Biomarkers
11.
Dermatol Online J ; 30(1)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38762856

ABSTRACT

Generalized pustular psoriasis is a rare variant of psoriasis. Evidence recommending generalized pustular psoriasis treatment with secukinumab is limited. This report aims to evaluate the use of secukinumab in two patients with generalized pustular psoriasis. The standard treatment regimen for secukinumab was as follows: 300mg subcutaneously once weekly in weeks 0-4, followed by 300mg every four weeks. The efficacy was evaluated by analyzing the psoriasis area and severity index (PASI) and dermatology life quality index (DLQI). One patient had generalized pustular psoriasis, which had developed from palmoplantar pustulosis over 12 years. The second patient was an adolescent with recurrent generalized pustular psoriasis. The first patient achieved PASI-75 response by week 3 and both PASI-90 and a DLQI score of 0 were observed by week 8. The second patient achieved PASI-75 response by week 4 and complete clinical resolution, except for nail changes, and a DLQI of 0 by week 8, without any adverse events.


Subject(s)
Antibodies, Monoclonal, Humanized , Psoriasis , Severity of Illness Index , Humans , Psoriasis/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Male , Adolescent , Female , Antibodies, Monoclonal/therapeutic use , Dermatologic Agents/therapeutic use , Quality of Life , Adult
12.
Angew Chem Int Ed Engl ; : e202404196, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39161281

ABSTRACT

In this study, we present a novel plasma-enabled strategy for the rapid breakdown of various types of plastic wastes, including mixtures, into high-value carbon nanomaterials and hydrogen. The H2 yield and selectivity achieved through the catalyst-free plasma-enabled strategy are 14.2 and 5.9 times higher, respectively, compared to those obtained with conventional thermal pyrolysis. It is noteworthy that this catalyst-free plasma alone approach yields a significantly higher energy yield of H2 (gH2/kWh) compared to other pyrolysis processes. By coupling plasma pyrolysis with thermal catalytic process, employing of 1 wt.% M/CeO2 atomically dispersed catalysts can further enhance hydrogen production. Specifically, the 1 wt.% Co/CeO2 catalyst demonstrated excellent catalytic performance throughout the 10 cycles of plastic waste decomposition, achieving the highest H2 yield of 46.7 mmol/gplastic (equivalent to 64.4% of theoretical H2 production) and nearly 100% hydrogen atom recovery efficiency at the 7th cycle. Notably, the H2 yield achieved over the atomically dispersed Fe on CeO2 surface in the integrated plasma-thermal catalytic process is comparable to that obtained with Fe particles on CeO2 surface (10 wt.%). This innovative and straightforward approach provides a promising and expedient strategy for continuously converting diverse plastic waste streams into high-value products conducive to a circular plastic economy.

13.
Anal Chem ; 95(48): 17834-17842, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37988125

ABSTRACT

Precise and sensitive analysis of exosomal microRNA (miRNA) is of great importance for noninvasive early disease diagnosis, but it remains a great challenge to detect exosomal miRNA in human blood samples because of their small size, high sequence homology, and low abundance. Herein, we integrated reliable Pt-S bond-mediated three-dimensional (3D) DNA nanomachine and magnetic separation in a homogeneous electrochemical strategy for the detection of exosomal miRNA with low background and high sensitivity. The 3D DNA nanomachine was easily prepared via a facile and rapid freezing method, and it was capable of resisting the influence of biothiols, thus endowing it with high stability. Notably, the as-developed magnetic 3D DNA nanomachine not only enabled the detection system to have a low background but also coupled with liposome nanocarriers to synergistically amplify the current signal. Consequently, by ingeniously combining the low background and multiple signal-amplification strategies in homogeneous electrochemical biosensing, highly sensitive detection of exosomal miRNA was successfully achieved. More significantly, with good anti-interference ability, the as-proposed method could effectively discriminate plasma samples from cancer patients and healthy subjects, thus showing a high potential for application in the nondestructive early clinical diagnosis of disease.


Subject(s)
Biosensing Techniques , MicroRNAs , Humans , MicroRNAs/analysis , DNA/analysis , Liposomes , Physical Phenomena , Magnetic Phenomena , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
14.
Small ; : e2309007, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037488

ABSTRACT

Ambient electrocatalytic nitrogen (N2 ) reduction has gained significant recognition as a potential substitute for producing ammonia (NH3 ). However, N2 adsorption and *NN protonation for N2 activation reaction with the competing hydrogen evolution reaction remain a daunting challenge. Herein, a defect-rich TiO2 nanosheet electrocatalyst with PdCu alloy nanoparticles (PdCu/TiO2-x ) is designed to elucidate the reactivity and selectivity trends of N2 cleavage path for N2 -to-NH3 catalytic conversion. The introduction of oxygen vacancy (OV) not only acts as active sites but also effectively promotes the electron transfer from Pd-Cu sites to high-concentration Ti3+ sites, and thus lends to the N2 activation via electron donation of PdCu. OVs-mediated control effectively lowers the reaction barrier of *N2 H and *H adsorption and facilitates the first hydrogenation process of N2 activation. Consequently, PdCu/TiO2-x catalyst attains a high rate of NH3 evolution, reaching 5.0 mmol gcat. -1  h-1 . This work paves a pathway of defect-engineering metal-supported electrocatalysts for high-efficient ammonia electrosynthesis.

15.
Small ; 19(10): e2207743, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36683224

ABSTRACT

Electrochemical nitrate (NO3 - ) reduction to ammonia (NH3 ) offers a promising pathway to recover NO3 - pollutants from industrial wastewater that can balance the nitrogen cycle and sustainable green NH3 production. However, the efficiency of electrocatalytic NO3 - reduction to NH3 synthesis remains low for most of electrocatalysts due to complex reaction processes and severe hydrogen precipitation reaction. Herein, high performance of nitrate reduction reaction (NO3 - RR) is demonstrated on self-supported Pd nanorod arrays in porous nickel framework foam (Pd/NF). It provides a lot of active sites for H* adsorption and NO3 - activation leading to a remarkable NH3 yield rate of 1.52 mmol cm-2  h-1 and a Faradaic efficiency of 78% at -1.4 V versus RHE. Notably, it maintains a high NH3 yield rate over 50 cycles in 25 h showing good stability. Remarkably, large-area Pd/NF electrode (25 cm2 ) shows a NH3 yield of 174.25 mg h-1 , be promising candidate for large-area device for industrial application. In situ FTIR spectroscopy and density functional theory calculations analysis confirm that the enrichment effect of Pd nanorods encourages the adsorption of H species for ammonia synthesis following a hydrogenation mechanism. This work brings a useful strategy for designing NO3 - RR catalysts of nanorod arrays with customizable compositions.

16.
J Nat Prod ; 86(12): 2651-2660, 2023 12 22.
Article in English | MEDLINE | ID: mdl-37967166

ABSTRACT

Glioma is a clinically heterogeneous type of brain tumor with a poor prognosis. Current treatment approaches have limited effectiveness in treating glioma, highlighting the need for novel drugs. One approach is to explore marine natural products for their therapeutic potential. In this study, we isolated nine shikimate-derived diisoprenyl-cyclohexene/ane-type meroterpenoids (1-9), including four new ones, amphicordins A-D (1-4) from the ascidian-derived fungus Amphichorda felina SYSU-MS7908, and further semisynthesized four derivatives (10-13). Their structures were extensively characterized using 1D and 2D NMR, modified Mosher's method, HR-ESIMS, NMR and ECD calculations, and X-ray crystallography. Notably, amphicordin C (3) possesses a unique benzo[g]chromene (6/6/6) skeleton in this meroterpenoid family. In an anti-glioma assay, oxirapentyn A (7) effectively inhibited the proliferation, migration, and invasion of glioma cells and induced their apoptosis. Furthermore, an in silico analysis suggested that oxirapentyn A has the potential to penetrate the blood-brain barrier. These findings highlight the potential of oxirapentyn A as a candidate for the development of novel anti-glioma drugs.


Subject(s)
Beauveria , Glioma , Urochordata , Animals , Humans , Shikimic Acid , Glioma/drug therapy , Molecular Structure
17.
Bioorg Chem ; 136: 106542, 2023 07.
Article in English | MEDLINE | ID: mdl-37087848

ABSTRACT

Two new cyclopropane derivatives (1-2) and seven undescribed α-pyrone derivatives (3-9), along with one known congener (10) were obtained from the marine fungus Stagonospora sp. SYSU-MS7888, which was isolated from the South China Sea. Their planar structures were established through extensive spectroscopic analyses including 1D and 2D NMR and HR-ESIMS. The absolute configurations were identified on basis of the quantum chemical calculations of ECD and NMR, as well as the modified Mosher's method. It's particularly noteworthy that the tetrasubstituted furopyrans, chenopodolans A-F, possessing phytotoxicity and zootoxicity, were structural misassignments. The structures of chenopodolans featuring with furopyran skeleton were revised as common trisubstituted α-pyrones by computational chemistry, NMR spectroscopic method, and empirical rule. Compounds 1, 2, 7, and 9 showed significant anti-inflammatory activity with IC50 values ranging from 3.6 to 22.8 µM, which is better than the positive control indomethacin (IC50 = 26.5 ± 1.13 µM). This discovery holds potential for the development of new anti-inflammatory agents.


Subject(s)
Ascomycota , Pyrones , Pyrones/pharmacology , Pyrones/chemistry , Molecular Structure , Ascomycota/chemistry , Magnetic Resonance Spectroscopy , Anti-Inflammatory Agents , Cyclopropanes
18.
Bioorg Chem ; 139: 106715, 2023 10.
Article in English | MEDLINE | ID: mdl-37543015

ABSTRACT

A combination strategy of 13C NMR and bioinformatics was established to expedite the discovery of acetylenic meroterpenoids from the ascidian-derived fungus Amphichorda felina SYSU-MS7908. This approach led to the identification of 13 acetylenic meroterpenoids (1-13) and four biogenic analogs (14-17), including five new ones named felinoids A-E (1-4 and 15). Their structures and absolute configurations were elucidated using extensive spectroscopy, ECD quantum chemical calculations, and single-crystal X-ray diffraction analysis. Compound 1 possessed a rare cyclic carbonate in natural acetylenic meroterpenoids. The plausible shikimate-terpenoid biosynthetic pathways of 1-4 were also postulated. Five of these isolates exhibited anti-inflammatory activity by inhibiting NO production in LPS-induced RAW264.7 cells (IC50 = 11.6-19.5 µM). Moreover, oxirapentyn E diacetate showed a dose-dependent inhibition of pro-inflammatory cytokines IL-6 and TNF-α. Structural modification of oxirapentyn B yielded 29 new derivatives, among which seven showed improved activity (IC50 < 3 µM) and higher selectivity index (SI > 22). The structure-activity relationship study indicated that 7, 8-epoxy, and 6-acylation were crucial for the activity. These findings may provide a powerful tool to accelerate the discovery of new fungal acetylenic meroterpenoids for future anti-inflammatory drug development.


Subject(s)
Acetylene , Urochordata , Animals , Molecular Structure , Alkynes , Terpenes/chemistry , Anti-Inflammatory Agents/chemistry , Magnetic Resonance Spectroscopy , Fungi
19.
Acta Pharmacol Sin ; 44(3): 584-595, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36045219

ABSTRACT

Transforming growth factor-ß1 (TGF-ß1) is regarded as a key factor in promoting renal fibrosis during chronic kidney disease (CKD). Signaling transduction of TGF-ß1 starts with binding to TGF-ß type II receptor (Tgfbr2), a constitutively activated kinase that phosphorylates TGF-ß type I receptor (Tgfbr1), and then activates downstream Smad2/3 or noncanonical pathways. Previous studies show that cellular senescence is associated with the progression of CKD, and accelerated tubular cell senescence is implicated in promoting renal fibrosis. In the present study we investigated the renal parenchymal cell senescence in fibrosis from the sight of posttranslational regulation and focused on Tgfbr2, the important gatekeeper for TGF-ß1 downstream signaling. In mice with unilateral ureteral obstruction (UUO) and folic acid (FA)-induced fibrotic kidneys, we found that Tgfbr2 was markedly elevated without obvious change in its mRNA levels. As an important member of deubiquitinating enzymes, ubiquitin-specific protease 11 (Usp11) was also significantly increased in fibrotic kidneys, and co-distributed with Tgfbr2 in tubular epithelial cells. Pretreatment with Usp11 inhibitor mitoxantrone (MTX, 30 mg · kg-1 · d-1, i.p.) twice a week, for 2 weeks significantly attenuated the elevation of Tgfbr2, activation in downstream senescence-related signaling pathway, as well as renal senescence and fibrosis. In cultured mouse tubular epithelial cells (MTECs), treatment with angiotensin II (Ang-II, 10-7, 10-6 M) dose-dependently elevated both Tgfbr2 and Usp11 levels. Inhibition or knockdown on Usp11 attenuated Ang-II-induced elevation in Tgfbr2 level, and attenuated the activation of downstream senescent-related signaling pathway and as well as cell senescence. We conducted Co-IP experiments, which revealed that Usp11 was able to interact with Tgfbr2, and inhibition of Usp11 increased the ubiquitination of Tgfbr2. Taken together, these results demonstrate that the elevation of Usp11 under pathological condition is implicated in promoting renal fibrosis. Usp11 promotes the development of renal fibrosis by deubiquitinating Tgfbr2, reducing Tgfbr2 ubiquitination degradation, and then facilitating the activation of downstream senescent signaling pathway.


Subject(s)
Cellular Senescence , Deubiquitinating Enzymes , Renal Insufficiency, Chronic , Animals , Mice , Cellular Senescence/physiology , Deubiquitinating Enzymes/metabolism , Epithelial Cells/metabolism , Fibrosis/metabolism , Kidney/pathology , Receptor, Transforming Growth Factor-beta Type II/metabolism , Renal Insufficiency, Chronic/pathology , Transforming Growth Factor beta1/metabolism , Ubiquitin/metabolism , Ureteral Obstruction/complications
20.
BMC Public Health ; 23(1): 1121, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308890

ABSTRACT

OBJECTIVES: Understanding the spatio-temporal patterns of the global burden of various diseases resulting from lead exposure is critical for controlling lead pollution and disease prevention. METHODS: Based on the 2019 Global Burden of Disease (GBD) framework and methodology, the global, regional, and national burden of 13 level-three diseases attributable to lead exposure were analyzed by disease type, patient age and sex, and year of occurrence. Population attributable fraction (PAF), deaths and disability-adjusted life years (DALYs), age-standardized mortality rate (ASMR) and age-standardized DALYs rate (ASDR) obtained from the GBD 2019 database were used as descriptive indicators, and the average annual percentage change (AAPC) was estimated by a log-linear regression model to reflect the time trend. RESULTS AND CONCLUSIONS: From 1990 to 2019, the number of deaths and DALYs resulting from lead exposure increased by 70.19% and 35.26%, respectively; however, the ASMR and ASDR decreased by 20.66% and 29.23%, respectively. Ischemic heart disease (IHD), stroke, and hypertensive heart disease (HHD) showed the highest increases in deaths; IHD, stroke, and diabetes and kidney disease (DKD) had the fastest-growing DALYs. The fastest decline in ASMR and ASDR was seen in stroke, with AAPCs of -1.25 (95% CI [95% confidence interval]: -1.36, -1.14) and -1.66 (95% CI: -1.76, -1.57), respectively. High PAFs occurred mainly in South Asia, East Asia, the Middle East, and North Africa. Age-specific PAFs of DKD resulting from lead exposure were positively correlated with age, whereas the opposite was true for mental disorders (MD), with the burden of lead-induced MD concentrated in children aged 0-6 years. The AAPCs of ASMR and ASDR showed a strong negative correlation with the socio-demographic index. Our findings showed that the global impact of lead exposure and its burden increased from 1990 to 2019 and varied significantly according to age, sex, region, and resulting disease. Effective public health measures and policies should be adopted to prevent and control lead exposure.


Subject(s)
Lead , Child , Humans , Africa, Northern , Asia, Eastern , Asia, Southern , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL