Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Publication year range
1.
Nat Methods ; 20(7): 1010-1020, 2023 07.
Article in English | MEDLINE | ID: mdl-37202537

ABSTRACT

The Cell Tracking Challenge is an ongoing benchmarking initiative that has become a reference in cell segmentation and tracking algorithm development. Here, we present a significant number of improvements introduced in the challenge since our 2017 report. These include the creation of a new segmentation-only benchmark, the enrichment of the dataset repository with new datasets that increase its diversity and complexity, and the creation of a silver standard reference corpus based on the most competitive results, which will be of particular interest for data-hungry deep learning-based strategies. Furthermore, we present the up-to-date cell segmentation and tracking leaderboards, an in-depth analysis of the relationship between the performance of the state-of-the-art methods and the properties of the datasets and annotations, and two novel, insightful studies about the generalizability and the reusability of top-performing methods. These studies provide critical practical conclusions for both developers and users of traditional and machine learning-based cell segmentation and tracking algorithms.


Subject(s)
Benchmarking , Cell Tracking , Cell Tracking/methods , Machine Learning , Algorithms
2.
Proc Natl Acad Sci U S A ; 120(39): e2306841120, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37722061

ABSTRACT

Although direct generation of high-value complex molecules and feedstock by coupling of ubiquitous small molecules such as CO2 and N2 holds great appeal as a potential alternative to current fossil-fuel technologies, suitable scalable and efficient catalysts to this end are not currently available as yet to be designed and developed. To this end, here we prepare and characterize SbxBi1-xOy clusters for direct urea synthesis from CO2 and N2 via C-N coupling. The introduction of Sb in the amorphous BiOx clusters changes the adsorption geometry of CO2 on the catalyst from O-connected to C-connected, creating the possibility for the formation of complex products such as urea. The modulated Bi(II) sites can effectively inject electrons into N2, promoting C-N coupling by advantageous modification of the symmetry for the frontier orbitals of CO2 and N2 involved in the rate-determining catalytic step. Compared with BiOx, SbxBi1-xOy clusters result in a lower reaction potential of only -0.3 V vs. RHE, an increased production yield of 307.97 µg h-1 mg-1cat, and a higher Faraday efficiency (10.9%), pointing to the present system as one of the best catalysts for urea synthesis in aqueous systems among those reported so far. Beyond the urea synthesis, the present results introduce and demonstrate unique strategies to modulate the electronic states of main group p-metals toward their use as effective catalysts for multistep electroreduction reactions requiring C-N coupling.

3.
J Am Chem Soc ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943666

ABSTRACT

Oxygen vacancies are generally considered to play a crucial role in the oxygen evolution reaction (OER). However, the generation of active sites created by oxygen vacancies is inevitably restricted by their condensation and elimination reactions. To overcome this limitation, here, we demonstrate a novel photoelectric reconstruction strategy to incorporate atomically dispersed Cu into ultrathin (about 2-3 molecular) amorphous oxyhydroxide (a-CuM, M = Co, Ni, Fe, or Zn), facilitating deprotonation of the reconstructed oxyhydroxide to generate high-valence Cu. The in situ XAFS results and first-principles calculations reveal that Cu atoms are stabilized at high valence during the OER process due to Jahn-Teller distortion, resulting in para-type double oxygen vacancies as dynamically stable catalytic sites. The optimal a-CuCo catalyst exhibits a record-high mass activity of 3404.7 A g-1 at an overpotential of 300 mV, superior to the benchmarking hydroxide and oxide catalysts. The developed photoelectric reconstruction strategy opens up a new pathway to construct in situ stable oxygen vacancies by high-valence Cu single sites, which extends the design rules for creating dynamically stable active sites.

4.
Mol Psychiatry ; 28(9): 3994-4010, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37833406

ABSTRACT

The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6-/- and Kv3.1-/- mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.


Subject(s)
Neurons , Potassium Channels, Voltage-Gated , Mice , Animals , Neurons/metabolism , Potassium Channels, Voltage-Gated/pharmacology , Cytoskeleton/metabolism , Microtubules/metabolism , Emotions , Shaw Potassium Channels/metabolism
5.
Angew Chem Int Ed Engl ; 63(20): e202402910, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38441480

ABSTRACT

The challenge of constructing a mechanically robust yet lightweight artificial solid-electrolyte interphase layer on lithium (Li) anodes highlights a trade-off between high battery safety and high energy density. Inspired by the intricate microstructure of the white sea urchin, we first develop a polyvinyl fluoride-hexafluoropropylene (PVDF-HFP) interfacial layer with a triple periodic minimal surface structure (TPMS) that could offer maximal modulus with minimal weight. This design endows high mechanical strength to an ordered porous structure, effectively reduces local current density, polarization, and internal resistance, and stabilizes the anode interface. At a low N/P ratio of ~3, using LiFePO4 as the cathode, Li anodes protected by TPMS-structured PVDF-HFP achieve an extremely low capacity-fading-rate of approximately 0.002 % per cycle over 200 cycles at 1 C, with an average discharge capacity of 142 mAh g-1. Meanwhile, the TPMS porous structure saves 50 wt % of the interfacial layer mass, thereby enhancing the energy density of the battery. The TPMS structure is conducive to large-scale additive manufacturing, which will provide a reference for the future development of lightweight, high-energy-density secondary batteries.

6.
Small ; 19(15): e2207742, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36610025

ABSTRACT

In consideration of high specific capacity and low redox potential, lithium metal anodes have attracted extensive attention. However, the cycling performance of lithium metal batteries generally deteriorates significantly under the stringent conditions of high temperature due to inferior heat tolerance of the solid electrolyte interphase (SEI). Herein, controllable SEI nanostructures with excellent thermal stability are established by the (trifluoromethyl)trimethylsilane (TMSCF3 )-induced interface engineering. First, the TMSCF3 regulates the electrolyte decomposition, thus generating an SEI with a large amount of LiF, Li3 N, and Li2 S nanocrystals incorporated. More importantly, the uniform distributed nanocrystals have endowed the SEI with enhanced thermostability according to the density functional theory simulations. Particularly, the sub-angstrom visualization on SEI through a conventional transmission electron microscope (TEM) is realized for the first time and the enhanced tolerance to the heat damage originating from TEM imaging demonstrates the ultrahigh thermostability of SEI. As a result, the highly thermostable interphase facilitates a substantially prolonged lifespan of full cells at a high temperature of 70 °C. As such, this work might inspire the universal interphase design for high-energy alkali-metal-based batteries applicated in a high-temperature environment.

7.
Sensors (Basel) ; 22(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36560346

ABSTRACT

This paper presents a new type of three-axis gyroscope. The gyroscope comprises two independent parts, which are nested to further reduce the structure volume. The capacitive drive was adopted. The motion equation, capacitance design, and spring design of a three-axis gyroscope were introduced, and the corresponding formulas were derived. Furthermore, the X/Y driving frequency of the gyroscope was 5954.8 Hz, the Y-axis detection frequency was 5774.5 Hz, and the X-axis detection frequency was 6030.5 Hz, as determined by the finite element simulation method. The Z-axis driving frequency was 10,728 Hz, and the Z-axis sensing frequency was 10,725 Hz. The MEMS gyroscope's Z-axis driving mode and the sensing mode's frequency were slightly mismatched, so the gyroscope demonstrated a larger bandwidth and higher Z-axis mechanical sensitivity. In addition, the structure also has good Z-axis impact resistance. The transient impact simulation of the gyroscope structure showed that the maximum stress of the sensitive structure under the impact of 10,000 g@5 ms was 300.18 Mpa. The gyroscope was produced by etching silicon wafers in DRIE mode to obtain a high aspect ratio structure, tightly connected to the glass substrate by silicon/glass anode bonding technology.

8.
Nanotechnology ; 29(50): 505710, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30264733

ABSTRACT

The contradictory nature between transition speed and thermal stability of phase-change materials has always been the key limitation to the achievement of wide applications under harsh conditions. Ge2.3Sb2.0Te phase-change alloy is proposed here to feature high thermal stability (10 year data retention above 220 °C) and fast switching speed (SET programming speed up to 5 ns) for electronic storage. In mushroom-shaped device cells, the nanocomposite materials implement an endurance life of nearly 1 × 105 cycles. Such operation speed among high-temperature alloys is the best ever reported. And the moderate incorporation of C offers intriguing benefits that include enhanced thermal stability and reduced RESET voltage in the above-mentioned Ge-rich Sb2Te-based memory cells. Through microscopic analysis, the local segregation of C dopants can further refine the crystalline grains and thus induce a lower volume change and roughness upon heating. These properties are crucial with regard to the application potential in high-performance and high-density embedded memories.

9.
Pharm Res ; 34(2): 310-320, 2017 02.
Article in English | MEDLINE | ID: mdl-27896589

ABSTRACT

PURPOSE: Bcl-2 is an anti-apoptotic gene that is frequently overexpressed in human cancers. G3139 is an antisense oligonucleotide against bcl-2 that has shown limited efficacy in clinical trials. Here, we report the synthesis of a new antisense oligonucleotide containing additional chemical modifications and its delivery using nanoparticles. METHODS: An oligonucleotide G3139-GAP was synthesized, which has 2'-O-methyl nucleotides at the 5' and 3' ends based on a "gapmer" design. Furthermore, G3139-GAP was incorporated into lipid nanoparticles (LNPs) composed of DOTAP/egg PC/cholesterol/Tween 80. The LNP-loaded G3139-GAP was evaluated in A549 lung cancer cells both in vitro and in a murine xenograft model for biological activity and therapeutic efficacy. RESULTS: The LNPs showed excellent colloidal and serum stability, and high encapsulation efficiency for G3139-GAP. They have a mean particle diameter and zeta potential of 134 nm and 9.59 mV, respectively. G3139-GAP-LNPs efficiently downregulated bcl-2 expression in A549 cells, as shown by 40% and 83% reduction in mRNA and protein levels, respectively. Furthermore, G3139-GAP-LNPs were shown to inhibit tumor growth, prolong survival, and downregulate tumor bcl-2 expression in an A549 murine xenograft tumor model. These data indicate that G3139-GAP-LNPs have excellent anti-tumor efficacy and warrant further evaluation.


Subject(s)
Lipids/chemistry , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , A549 Cells , Animals , Cell Line, Tumor , Down-Regulation/drug effects , Humans , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/administration & dosage , Particle Size , RNA, Messenger/metabolism , Thionucleotides/administration & dosage , Thionucleotides/chemistry
10.
Phys Chem Chem Phys ; 17(9): 6242-7, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25655600

ABSTRACT

In this paper, we investigated the wettability and adhesive behavior of the natural honeycomb wall for water and honey droplets. The cell walls have hydrophobic and highly adhesive properties for both water and honey in air. This highly adhesive cell wall was used as a "mechanical hand" to transfer micro-droplets. These findings will help us to comprehensively understand the surface properties of honeycomb walls, and will provide a novel strategy for achieving functional biomimetics based on honeycombs.


Subject(s)
Bees , Adhesiveness , Animals , Cell Wall , Surface Properties , Water , Wettability
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 32(6): 1359-63, 2015 Dec.
Article in Zh | MEDLINE | ID: mdl-27079114

ABSTRACT

Implant surface modified coating can improve its osteoinductivity, about which simple calcium phosphate coating has been extensively studied. But it has slow osteointegration speed and poor antibacterial property, while other metal ions added, such as nano zinc ion, can compensate for these deficiencies. This paper describes the incorporation form, the effect on physical and chemical properties of the material and the antibacterial property of nano zinc, and summarizes the material's biological property given by calcium ion, zinc ion and inorganic phosphate (Pi), mainly focusing on the influence of these three inorganic ions on osteoblast proliferation, differentiation, protein synthesis and matrix mineralization in order to present the positive function of zinc doped calcium phosphate in the field of bone formation.


Subject(s)
Biocompatible Materials , Calcium Phosphates/chemistry , Osteogenesis , Phosphates/chemistry , Zinc/chemistry , Calcium , Cell Differentiation , Cell Proliferation , Humans , Ions , Metal Nanoparticles/chemistry , Osteoblasts/cytology
12.
Dent Mater ; 40(1): e1-e17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37891132

ABSTRACT

OBJECTIVES: Zirconia-based dental restorations and implants are gaining attention due to their bioactivity, corrosion resistance and mechanical stability. Further, surface modification of zirconia implants has been performed at the macro-, micro- and nanoscale to augment bioactivity. While zirconia's physical and chemical characteristics have been documented, its relation to mechanical performance still needs to be explored. This extensive review aims to address this knowledge gap. METHODS: This review critically compares and contrasts the findings from articles published in the domain of 'mechanical stability of zirconia\ in dentistry' based on a literature survey (Web of Science, Medline/PubMed and Scopus databases) and a review of the relevant publications in international peer-reviewed journals. Reviewing the published data, the mechanical properties of zirconia, such as fracture resistance, stress/tension, flexural strength, fatigue, and wear are detailed and discussed to understand the biomechanical compatibility of zirconia with the mechanical performance of modified zirconia in dentistry also explored. RESULTS: A comprehensive insight into dental zirconia's critical fundamental mechanical characteristics and performance is presented. Further, research challenges and future directions in this domain are recommended. SIGNIFICANCE: This review extends existing knowledge of zirconia's biomechanical performance and it they can be modulated to design the next generation of zirconia dental restorations and implants to withstand long-term constant loading.


Subject(s)
Dental Prosthesis Design , Zirconium , Zirconium/chemistry , Flexural Strength , Dental Restoration Failure , Surface Properties , Materials Testing
13.
Adv Sci (Weinh) ; 11(22): e2310166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38544352

ABSTRACT

Advanced lithium-ion batteries (LIBs) are crucial to portable devices and electric vehicles. However, it is still challenging to further develop the current anodic materials such as graphite due to the intrinsic limited capacity and sluggish Li-ion diffusion. Indium nitride (InN), which is a new type of anodic material with low redox potential (<0.7 V vs Li/Li+) and narrow bandgap (0.69 eV), may serve as a new high-energy density anode material for LIBs. Here, the growth of 1D single crystalline InN nanowires is reported on Au-decorated carbon fibers (InN/Au-CFs) via chemical vapor deposition, possessing a high aspect ratio of 400. The binder-free Au-CFs with high conductivity can provide abundant sites and enhance binding force for the dense growth of InN nanowires, displaying shortened Li ion diffusion paths, high structural stability, and fast Li+ kinetics. The InN/Au-CFs can offer stable and high-rate Li delithiation/lithiation without Li deposition, and achieve a remarkable capacity of 632.5 mAh g-1 at 0.1 A g-1 after 450 cycles and 416 mAh g-1 at a high rate of 30 A g-1. The InN nanowires as battery anodes shall hold substantial promise for fulfilling superior long-term cycling performance and high-rate capability for advanced LIBs.

14.
Adv Mater ; 36(23): e2402071, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38382487

ABSTRACT

Photocatalytic reduction of CO2 to energy carriers is intriguing in the industry but kinetically hard to fulfil due to the lack of rationally designed catalysts. A promising way to improve the efficiency and selectivity of such reduction is to break the structural symmetry of catalysts by manipulating coordination. Here, inspired by analogous CoO6 and CoSe6 octahedral structural motifs of the Co(OH)2 and CoSe, a hetero-anionic coordination strategy is proposed to construct a symmetry-breaking photocatalyst prototype of oxygen-deficient Se-doped cobalt hydroxide upon first-principles calculations. Such involvement of large-size Se atoms in CoO6 octahedral frameworks experimentally lead to the switching of semiconductor type of cobalt hydroxide from p to n, generation of oxygen defects, and amorphization. The resultant oxygen-deficient Se,O-coordinated Co-based amorphous nanosheets exhibit impressive photocatalytic performance of CO2 to CO with a generation rate of 60.7 µmol g-1 h-1 in the absence of photosensitizer and scavenger, superior to most of the Co-based photocatalysts. This work establishes a correlation between the symmetry-breaking of catalytic sites and CO2 photoreduction performances, opening up a new paradigm in the design of amorphous photocatalysts for CO2 reduction.

15.
Food Chem X ; 22: 101405, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38694543

ABSTRACT

This study investigated the effect of inulin with different polymerization degrees (DP), including L-inulin (DP 2-6), M-inulin (DP 10-23) and H-inulin (DP 23-46), on the structural and gelation properties of potato protein isolate (PPI). Results revealed that textural properties (hardness, cohesiveness, springiness and chewiness) and water-holding capacity (WHC) of PPI-inulin composite gels were positively correlated with the inulin DP and addition content at 0-1.5% (w/v), but deteriorated at 2% due to phase separation. The addition of 1.5% H-inulin showed the most significant increment effects on the WHC (18.65%) and hardness (2.84 N) of PPI gel. Furthermore, M-/H-inulin were more effective in increasing the whiteness and surface hydrophobicity, as well as in strengthening hydrogen bonds and hydrophobic interactions than L-inulin. Fourier transform infrared spectroscopy analysis and microstructural observation indicated that inulin with higher DP promoted more generation of ß-sheet structures, and leading to the formation of stronger and finer network structures.

16.
Adv Mater ; 36(15): e2310428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38230871

ABSTRACT

Metal hexacyanoferrates (HCFs) are viewed as promising cathode materials for potassium-ion batteries (PIBs) because of their high theoretical capacities and redox potentials. However, the development of an HCF cathode with high cycling stability and voltage retention is still impeded by the unavoidable Fe(CN)6 vacancies (VFeCN) and H2O in the materials. Here, a repair method is proposed that significantly reduces the VFeCN content in potassium manganese hexacyanoferrate (KMHCF) enabled by the reducibility of sodium citrate and removal of ligand H2O at high temperature (KMHCF-H). The KMHCF-H obtained at 90 °C contains only 2% VFeCN, and the VFeCN is concentrated in the lattice interior. Such an integrated Fe-CN-Mn surface structure of the KMHCF-H cathode with repaired surface VFeCN allows preferential decomposition of potassium bis(fluorosulfonyl)imide (KFSI) in the electrolyte, which constitutes a dense anion-dominated cathode electrolyte interphase (CEI) , inhibiting effectively Mn dissolution into the electrolyte. Consequently, the KMHCF-H cathode exhibits excellent cycling performance for both half-cell (95.2 % at 0.2 Ag-1 after 2000 cycles) and full-cell (99.4 % at 0.1 Ag-1 after 200 cycles). This thermal repair method enables scalable preparation of KMHCF with a low content of vacancies, holding substantial promise for practical applications of PIBs.

17.
Adv Mater ; : e2400639, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664988

ABSTRACT

Lithium-sulfur (Li-S) batteries, operated through the interconversion between sulfur and solid-state lithium sulfide, are regarded as next-generation energy storage systems. However, the sluggish kinetics of lithium sulfide deposition/dissolution, caused by its insoluble and insulated nature, hampers the practical use of Li-S batteries. Herein, leaf-like carbon scaffold (LCS) with the modification of Mo2C clusters (Mo2C@LCS) is reported as host material of sulfur powder. During cycles, the dissociative Mo ions at the Mo2C@LCS/electrolyte interface are detected to exhibit competitive binding energy with Li ions for lithium sulfide anions, which disrupts the deposition behavior of crystalline lithium sulfide and trends a shift in the configuration of lithium sulfide toward an amorphous structure. Combining the related electrochemical study and first-principle calculation, it is revealed that the formation of amorphous lithium sulfides shows significantly improved kinetics for lithium sulfide deposition and decomposition. As a result, the obtained Mo2C@LCS/S cathode shows an ultralow capacity decay rate of 0.015% per cycle at a high mass loading of 9.5 mg cm-2 after 700 cycles. More strikingly, an ultrahigh sulfur loading of 61.2 mg cm-2 can also be achieved. This work defines an efficacious strategy to advance the commercialization of Mo2C@LCS host for Li-S batteries.

18.
Adv Mater ; 36(14): e2310918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38170168

ABSTRACT

Despite of urgent needs for highly stable and efficient electrochemical water-splitting devices, it remains extremely challenging to acquire highly stable oxygen evolution reaction (OER) electrocatalysts under harsh industrial conditions. Here, a successful in situ synthesis of FeCoNiMnCr high-entropy alloy (HEA) and high-entropy oxide (HEO) heterocatalysts via a Cr-induced spontaneous reconstruction strategy is reported, and it is demonstrated that they deliver excellent ultrastable OER electrocatalytic performance with a low overpotential of 320 mV at 500 mA cm-2 and a negligible activity loss after maintaining at 100 mA cm-2 for 240 h. Remarkably, the heterocatalyst holds outstanding long-term stability under harsh industrial condition of 6 m KOH and 85 °C at a current density of as high as 500 mA cm-2 over 500 h. Density functional theory calculations reveal that the formation of the HEA-HEO heterostructure can provide electroactive sites possessing robust valence states to guarantee long-term stable OER process, leading to the enhancement of electroactivity. The findings of such highly stable OER heterocatalysts under industrial conditions offer a new perspective for designing and constructing efficient high-entropy electrocatalysts for practical industrial water splitting.

19.
ACS Nano ; 18(20): 13286-13297, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728215

ABSTRACT

The ideal interface design between the metal and substrate is crucial in determining the overall performance of the alkyne semihydrogenation reaction. Single-atom alloys (SAAs) with isolated dispersed active centers are ideal media for the study of reaction effects. Herein, a charge-asymmetry "armor" SAA (named Pd1Fe SAA@PC), which consists of a Pd1Fe alloy core and a semiconducting P-doped C (PC) shell, is rationally designed as an ideal catalyst for the selective hydrogenation of alkynes with high efficiency. Multiple spectroscopic analyses and density functional theory calculations have demonstrated that Pd1Fe SAA@PC is dual-regulated by lattice tensile and Schottky effects, which govern the selectivity and activity of hydrogenation, respectively. (1) The PC shell layer applied an external traction force causing a 1.2% tensile strain inside the Pd1Fe alloy to increase the reaction selectivity. (2) P doping into the C-shell layer realized a transition from a p-type semiconductor to an n-type semiconductor, thereby forming a unique Schottky junction for advancing alkyne semihydrogenation activity. The dual regulation of lattice strain and the Schottky effect ensures the excellent performance of Pd1Fe SAA@PC in the semihydrogenation reaction of phenylethylene, achieving a conversion rate of 99.9% and a selectivity of 98.9% at 4 min. These well-defined interface modulation strategies offer a practical approach for the rational design and performance optimization of semihydrogenation catalysts.

20.
Adv Mater ; 35(48): e2306577, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572373

ABSTRACT

Sodium ion batteries (SIBs) suffer from large electrode volume change and sluggish redox kinetics for the relatively large ionic radius of sodium ions, raising a significant challenge to improve their long-term cyclability and rate capacity. Here, it is proposed to apply 2D amorphous iron selenide sulfide nanosheets (a-FeSeS NSs) as an anode material for SIBs and demonstrate that they exhibit remarkable rate capability of 528.7 mAh g-1 at 1 A g-1 and long-life cycle (10 000 cycles) performance (300.4 mAh g-1 ). This performance is much more superior to that of the previously reported Fe-based anode materials, which is attributed to their amorphous structure that alleviates volume expansion of electrode, 2D nature that facilitates electrons/ions transfer, and the S/Se double anions that offer more reaction sites and stabilize the amorphous structure. Such a 2D amorphous strategy provides a fertile platform for structural engineering of other electrode materials, making a more secure energy prospect closer to a reality.

SELECTION OF CITATIONS
SEARCH DETAIL