Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Appl Toxicol ; 44(2): 201-215, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37697829

ABSTRACT

Huobahua, namely, Tripterygium hypoglaucum (Levl.) Hutch, known as a traditional Chinese herbal medicine, especially its underground parts, has been widely developed into several Tripterygium agents for the treatment of rheumatoid arthritis and other autoimmune diseases. It has sparked wide public concern about its safety, such as multi-organ toxicity. However, the toxic characteristics and damage mechanism of Huobahuagen extract (HBHGE) remain unclear. In the present study, subchronic oral toxicity study of HBHGE (10.0 g crude drug/kg/day for 12 weeks) was performed in male rats. Hematological, serum biochemical, and histopathological parameters, urinalysis, and plasma metabolic profiling were assessed. The single-dose subchronic toxicity results related to HBHGE exhibited obvious toxicity to the testis and epididymis of male rats. Furthermore, plasma metabolomics analysis suggested that a series of metabolic disorders were induced by oral administration of HBHGE, mainly focusing on amino acid (glutamate, phenylalanine, and tryptophan) metabolisms, pyrimidine metabolism, glutathione metabolism, and steroid hormone biosynthesis. Moreover, it appeared that serum testosterone in male rats treated with HBHGE for 12 weeks, decreased significantly, and was susceptible to the toxic effects of HBHGE. Taken together, conventional pathology and plasma metabolomics for preliminarily exploring subchronic toxicity and underlying mechanism can provide useful information about the reduction of toxic risks from HBHGE and new insights into the development of detoxification preparations.


Subject(s)
Medicine, Chinese Traditional , Testis , Rats , Male , Animals , Metabolomics/methods , Plasma , Tripterygium/chemistry , Plant Extracts/toxicity , Toxicity Tests, Subchronic
2.
Eur J Neurol ; 30(11): 3516-3528, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35129268

ABSTRACT

BACKGROUND AND PURPOSE: Febrile seizures (FS) pose a severe threat to the neurological development of children. Probing the abnormality of host metabolism is essential for the prevention, diagnosis, and treatment of FS. METHODS: Based on clinically collected serum and fecal samples, we used nontargeted metabolomics and 16S rDNA sequencing to explore the relationship of serum metabolite levels and gut microbiota community with the occurrence of FS. RESULTS: Metabolomic analysis revealed abnormalities in multiple metabolic pathways in serum of FS patients, such as tryptophan metabolism and steroid hormone biosynthesis. Intestinal flora analysis indicated that the α-diversity of gut microbiota in FS patients was significantly reduced. In addition, the relative abundance of a variety of bacteria at the phylum level was remarkably changed in patients with FS, including decreased Firmicutes and Verrucomicrobia. Eleven serum metabolites were identified to be biomarker candidates for FS diagnosis. With the help of a panel biomarker strategy combining four biomarkers as a cluster, four bacteria (i.e., Rothia, Coprococcus, Lactobacillus, and Oscillospira) in a defined panel displayed perfect differentiation of subtypes of FS. CONCLUSIONS: Combining metabolomic and intestinal flora analysis revealed specific characteristics of children with FS, and provided new clues for the diagnosis of FS and the classification of seizure types. In summary, these findings may provide new insights into revealing the significance of serum metabolites and gut microbiota in the pathogenesis of FS.

3.
BMC Biotechnol ; 22(1): 16, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624465

ABSTRACT

BACKGROUND: The aim of the present study is to increase the solubility of dihydroartemisinin (DHA) using the self-emulsifying drug delivery system (SEDDS). METHODS: We first conducted solubility test and ternary phase diagram, then, in order to optimize the formulation of the DHA self-emulsifying agent, the design mixture method was selected in the design expert software. Next, optimal prescription validation and preliminary formulation evaluation were conducted. By comparing the oil-water partition coefficient in vitro, the improvement of the in vivo osmotic absorption of DHA via self-emulsification was evaluated. RESULTS: The optimal prescription ratio of oleic acid polyethylene glycol glyceride, polyoxyethylene hydrogenated castor oil, and diethylene glycol monoethyl ether in the DHA self-emulsifying preparation = 0.511:0.2:0.289 (w/w/w), with a drug-loading capacity of 26.3634 mg/g, solubility of 2.5448 mg/ml, and self-emulsification time of 230 s. The solubility self-emulsification was approximately 20.52 × higher in DHA than in the crude drug. The self-emulsification could improve DHA permeability and promoting in vivo DHA absorption. CONCLUSION: The DHA SEDDS could significantly improve DHA solubility and in vivo absorption.


Subject(s)
Drug Delivery Systems , Polyethylene Glycols , Artemisinins , Solubility , Water
4.
BMC Biotechnol ; 22(1): 3, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031033

ABSTRACT

BACKGROUND: The present study intends to optimize the processing technology for the wine-processing of Rhizoma Coptidis, using alkaloids as indicators. METHOD: In the present study, the Box-Behnken design method was adopted to optimize the processing technology for Rhizoma Coptidis, using the alkaloid component quantities as the index. 100 g of Rhizoma Coptidis slices and 12.5 g of Rhizoma Coptidis wine were used. After full mixing, box-Behnken design method was used to optimize the processing time, processing temperature and processing time of coptis chinensis by taking alkaloid content as index. After mixing well, these components were fried in a container at 125 °C for 6 min and exhibited good parallelism. RESULTS: The content of alkaloids in coptis chinensis was the highest after roasting at 125 °C for 6 min. The characteristic components were berberine hydrochloride, and the relative content was about 15.96%. And showed good parallelism. The effective components of Rhizoma Coptidis were primarily alkaloids. CONCLUSION: The optimized processing technology for Rhizoma Coptidis is good.


Subject(s)
Alkaloids , Coptis , Drugs, Chinese Herbal , Chromatography, High Pressure Liquid/methods , Rhizome , Technology
5.
Phytother Res ; 36(9): 3371-3393, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35871532

ABSTRACT

Gastrointestinal cancer (GIC), including gastric cancer and colorectal cancer, is a common malignant tumor originating from the gastrointestinal epithelium. Although the pathogenesis of GIC has not been fully elucidated, angiogenesis is recognized as the key pathological basis for the growth, invasion and metastasis of cancer cells, and GIC angiogenesis is closely related to vascular endothelial growth factor family, hypoxia-inducible factor family, fibroblast growth factor family and matrix metalloproteinase family. Recently, many natural products have shown a wide range of pharmacological biological activities against GIC. In this review, the effects and mechanisms of natural compounds on the angiogenesis of gastric and colorectal cancer were summarized. The results show that some natural compounds, especially gallic catechin gallate, astragaloside and curcumin, can effectively inhibit angiogenesis; the HIF-1α/VEGF, COX-2/PGE2, HGF/c-Met and PI3K/Akt/mTOR are involved in these inhibition effects. This review examines the anti-angiogenesis potential of natural products in the GIC treatment and provides clues to the development of vascular targeted agents.


Subject(s)
Biological Products , Colorectal Neoplasms , Stomach Neoplasms , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
6.
Helicobacter ; 25(1): e12665, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31657090

ABSTRACT

BACKGROUND: Recent studies have shown that gastrokine 1 (GKN1), an important tumor suppressor gene, is downregulated in Helicobacter pylori (H. pylori) infected gastric mucosa and gastric cancer. However, the underlying mechanism is poorly understood. Herein, we investigated the potential mechanism of H. pylori-induced GKN1 downregulation. MATERIALS AND METHODS: GKN1 and AU-rich element RNA-binding factor 1 (AUF1) expressions were assessed by quantitative real-time PCR, Western blot, or immunohistochemistry in H. pylori-infected tissues and H. pylori co-cultured cell lines. The regulation of AUF1 on GKN1 was determined by RNA pulldown assay, RNA immunoprecipitation, mRNA turnover, and luciferase activity assays. The involvement of phosphorylated extra-cellular signal-regulated kinase (p-ERK) or CagA in H. pylori-induced AUF1 expression was verified using p-ERK inhibitor or CagA knockout H. pylori. In addition, the cell proliferation and migration capacities of AUF1-knockdown cells were investigated. RESULTS: GKN1 expression progressively decreased from H. pylori-infected gastritis to gastric cancer tissues. H. pylori co-culture also induced significant GKN1 reduction in GES-1 and BGC-823 cells. Besides, the mRNA level of GKN1 and AUF1 in human gastric mucosa showed negative correlation significantly. AUF1 knockdown resulted in upregulation of GKN1 expression and promoted GKN1 mRNA decay by binding the 3' untranslated region of GKN1 mRNA H. pylori-induced AUF1 expression was associated with p-ERK activation and CagA. Furthermore, knockdown of AUF1 significantly inhibited cell viability, migration ability, and arrested fewer cells in S-phase. CONCLUSION: Our data demonstrated that H. pylori infection downregulated GKN1 expression via the CagA/p-ERK/AUF1 pathway. AUF1 promoted gastric cancer at least partly through downregulating GKN1, which presented a novel potential target for the treatment of gastric cancer.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Helicobacter Infections/enzymology , Helicobacter pylori/metabolism , Heterogeneous Nuclear Ribonucleoprotein D0/metabolism , Peptide Hormones/metabolism , Stomach Neoplasms/metabolism , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Helicobacter Infections/genetics , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/genetics , Heterogeneous Nuclear Ribonucleoprotein D0/genetics , Host-Pathogen Interactions , Humans , Peptide Hormones/genetics , Phosphorylation , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
7.
Biomed Chromatogr ; 34(6): e4801, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31999361

ABSTRACT

We evaluated the protective effect and toxicity of extracts from Mylabris phalerata Pallas by measuring the activated partial thromboplastin time, prothrombin time, venous thrombosis and acute toxicity in rats. Results showed the petroleum ether and water fractions of M. phalerata inhibited thrombosis but hardly prolonged the activated partial thromboplastin time and prothrombin time in rats. The trichloromethane fraction had obvious toxicity with an LD50 of 0.2 g/kg in vivo, and contained many cantharidin analogs (CAs) by ultra-performance liquid chromatography-quadrupole ion trap-tandem mass spectrometry (UPLC-QTRAP-MS/MS). CAs are the major potential bioactivity constituent in M. phalerata. An effective and reliable UPLC-QTRAP-MS/MS method was successfully developed to separate and identify CAs. The fragmentation patterns of five purified compounds were applied to elucidate the structure of their analogs. Thirty-four CAs were characterized or tentatively identified, eight of which are proposed to be novel compounds (13-17, 20, 21, 23), and their fragmentation patterns were investigated for the first time. Most importantly, a rapid and reliable UPLC-MS method was developed to identify the CAs of M. phalerata. This method has contributed to the discovery of most of these unknown analogs or their metabolites in M. phalerata effectively and quickly, and does not rely on limited chemical structural diversity libraries.


Subject(s)
Cantharidin , Chromatography, High Pressure Liquid/methods , Coleoptera/chemistry , Tandem Mass Spectrometry/methods , Animals , Blood Coagulation/drug effects , Blood Coagulation Tests , Cantharidin/analogs & derivatives , Cantharidin/analysis , Cantharidin/chemistry , Cantharidin/pharmacology , Female , Fibrinolytic Agents/analysis , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Male , Rats
8.
Anal Bioanal Chem ; 408(16): 4275-86, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27074781

ABSTRACT

Osteoarthritis (OA), one of the most widespread musculoskeletal joint diseases among the aged, is characterized by the progressive loss of articular cartilage and continuous changes in subchondral bone. The exact pathogenesis of osteoarthritis is not completely clear. In this work, ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) in combination with multivariate statistical analysis was applied to analyze the metabolic profiling of subchondral bone from 42 primary osteoarthritis patients. This paper described a modified two-step method for extracting the metabolites of subchondral bone from primary osteoarthritis patients. Finally, 68 metabolites were identified to be significantly changed in the sclerotic subchondral bone compared with the non-sclerotic subchondral bone. Taurine and hypotaurine metabolism and beta-alanine metabolism were probably relevant to the sclerosis of subchondral bone. Taurine, L-carnitine, and glycerophospholipids played a vital regulation role in the pathological process of sclerotic subchondral bone. In the sclerotic process, beta-alanine and L-carnitine might be related to the increase of energy consumption. In addition, our findings suggested that the intra-cellular environment of sclerotic subchondral bone might be more acidotic and hypoxic compared with the non-sclerotic subchondral bone. In conclusion, this study provided a new insight into the pathogenesis of subchondral bone sclerosis. Our results indicated that metabolomics could serve as a promising approach for elucidating the pathogenesis of subchondral bone sclerosis in primary osteoarthritis. Graphical Abstract Metabolic analysis of osteoarthritis subchondral bone.


Subject(s)
Chromatography, High Pressure Liquid/methods , Knee Joint/chemistry , Osteoarthritis/metabolism , Tandem Mass Spectrometry/methods , Aged , Female , Humans , Knee Joint/metabolism , Male , Middle Aged , Taurine/chemistry , Taurine/metabolism , beta-Alanine/chemistry , beta-Alanine/metabolism
9.
Zhongguo Zhong Yao Za Zhi ; 41(10): 1926-1932, 2016 May.
Article in Zh | MEDLINE | ID: mdl-28895345

ABSTRACT

Caffeine and its metabolic products play an important role in clinical applications. An ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS/MS) method was applied to systemically study the caffeine metabolism in liver microsomes of rats and mice, and comprehensively evaluate caffeine metabolites in vitro and metabolism differences between species. The caffeine metabolites and metabolism differences between species in liver microsomes of rats and mice were analyzed by UPLC-Q-TOF-MS/MS high resolution mass spectrometry system and metabolitepolite software. The results showed that in addition to the demethylated and oxidized products in previous analysis, methylated, double oxidized, dehydrated and decarbonylated metabolites were also found in caffeine metabolism in liver microsomes of rats and mice, with significant difference in metabolism in vitro between rats and mice. The demethylated metabolite M2(C7H8N4O2) and decarbonylated metabolite M6(C7H10N4) in metabolism in vitro of mice were not found in rats, and the in vitro metabolite M7(C8H12N4O5) in rats were not found in mice. There was significant species difference in caffeine metabolism in vitro between rats and mice, providing important reference value for the further metabolism study and safety evaluation of caffeine.


Subject(s)
Caffeine/metabolism , Microsomes, Liver/metabolism , Animals , Chromatography, High Pressure Liquid , Mice , Rats , Species Specificity , Tandem Mass Spectrometry
11.
Bioprocess Biosyst Eng ; 37(3): 461-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24005761

ABSTRACT

A new electrochemical sensor based on a novel organic-inorganic material (PNFCTs) was proposed for detection of paracetamol in this paper. First, PNFCTs were prepared with multi-walled carbon nanotubes (MWNTs) and a derivative of 3,4,9,10-perylenetetracarboxylic dianhydride (PTC-NH2) via cross-linking method. Then, PNFCTs were coated onto the surface of the glassy carbon electrode (GCE) to form porous organic conducting polymer films (PNFCTs/GCE), which could not only increase the loading of paracetamol efficiently but also provide an interface with exceptional electrical conductivity for paracetamol. Finally, gold nanoparticles (GNPs) were attached to the electrode surface through electrodepositing method, which obtained GNPs/PNFCTs/GCE electrode. The electrochemical behavior of paracetamol on GNPs/PNFCTs/GCE was explored by cyclic voltammetrys (CVs) and differential pulse voltammograms (DPVs). The results showed that the GNPs/PNFCTs/GCE exhibited excellent electrocatalytic activity to paracetamol, which should be attributed to remarkable properties of the new composite nanomaterials with porous nanostructure and exceptional electrical conductivity. The wide liner range and detection limit were 0.3-575 and 0.1 µM, respectively. Finally, it was successfully used to detect paracetamol in dilution human serum and commercial tablets. The sensor shows great promise for simple, sensitive, and selective detection paracetamol and provides a promising approach in paracetamol clinical research and overdose diagnostic applications.


Subject(s)
Acetaminophen/analysis , Electrochemical Techniques/instrumentation , Inorganic Chemicals/chemistry , Nanotubes, Carbon , Organic Chemicals/chemistry , Limit of Detection , Microscopy, Electron, Transmission
12.
Food Chem ; 448: 138929, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38522299

ABSTRACT

THC is the main metabolite of curcumin with better bioactivity. This study aimed to explore the factors that cause differences in the bioactivity of curcumin and THC. We analyzed the metabolic activities of curcumin and THC and the factors responsible for the differences in their activities by glucuronidation activity assay, LC-MS, HPLC, homologous sequence comparisons, and molecular docking. Curcumin has higher metabolic activity than THC in HLM and UGT2B7, while the keto-enol isomers of curcumin and THC were distinctly different under different pH, and their structural transformations were hypothesized. Furthermore, UGT1A and UGT2B are differential sequences of curcumin and THC in UGTs. The binding sites and patterns of curcumin and THC in UGT2B7 are markedly different. In summary, the difference in keto-enolic interconversion isomerism between curcumin and THC is the main factor causing the difference in their activities, which provides a scientific basis for the development of curcumin.

13.
Front Pharmacol ; 14: 1183612, 2023.
Article in English | MEDLINE | ID: mdl-37266151

ABSTRACT

The Background: Stroke is one of the leading causes of morbidity and mortality, and the inflammatory mechanism plays a crucial role in stroke-related brain injury and post-ischemic tissue damage. Xiaoxuming decoction (XXMD) is the first prescription for the treatment of "zhongfeng" (a broad concept referring to stroke) in the Tang and Song Dynasties of China and has a significant position in the history of stroke treatment. Through the study of ancient medical records and modern clinical evidence, it is evident that XXMD has significant efficacy in the treatment of stroke and its sequelae, and its pharmacological mechanism may be related to post-stroke inflammation. However, XXMD contains 12 medicinal herbs with complex composition, and therefore, a simplified version of XXMD, called Xiaoxuming decoction cutting (XXMD-C), was derived based on the anti-inflammatory effects of the individual herbs. Therefore, it is necessary to explore and confirm the anti-inflammatory mechanism of XXMD-C. Aim of the study: Based on the previous experiments of our research group, it was found that both XXMD and XXMD-C have anti-inflammatory effects on LPS-induced microglia, and XXMD-C has a better anti-inflammatory effect. Since miRNAs in exosomes also participate in the occurrence and development of cardiovascular diseases, and traditional Chinese medicine can regulate exosomal miRNAs through intervention, this study aims to explore the anti-inflammatory mechanism of XXMD-C in the treatment of post-stroke inflammation through transcriptome sequencing, providing a basis for the application of XXMD-C. Materials and methods: XXMD-C was extracted using water and filtered through a 0.22 µm membrane filter. The main chemical components of the medicinal herbs in XXMD-C were rapidly qualitatively analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Cell viability was determined using the CCK-8 assay, and an LPS-induced BV-2 cell inflammation model was established. The expression of inflammatory cytokines was detected using ELISA and Western blot (WB). Extracellular vesicles were extracted using ultracentrifugation, and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis, and WB. Differential miRNAs were screened using smallRNA-seq sequencing, and validated using RT-PCR and Western blot. Results: The UPLC-Q-TOF-MS analysis revealed that representative components including ephedrine, pseudoephedrine, cinnamaldehyde, baicalin, baicalein, wogonin, and ginsenoside Rg1 were detected in XXMD-C. The results of ELISA and WB assays showed that XXMD-C had a therapeutic effect on LPS-induced inflammation in BV-2 cells. TEM, nanoparticle tracking analysis, and WB results demonstrated the successful extraction of extracellular vesicles using high-speed centrifugation. Differential miRNA analysis by smallRNA-seq identified miR-9-5p, which was validated by RT-PCR and WB. Inhibition of miR-9-5p was found to downregulate the expression of inflammatory factors including IL-1ß, IL-6, iNOS, and TNF-α. Conclusion: The study found that XXMD-C has anti-neuroinflammatory effects. Through smallRNA-seq sequencing of extracellular vesicles, miR-9-5p was identified as a key miRNA in the mechanism of XXMD-C for treating neuroinflammation, and its in vivo anti-inflammatory mechanism deserves further investigation.

14.
Drug Deliv ; 30(1): 2168794, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36708154

ABSTRACT

The aim of this study is to demonstrate a method for improving the solubility and relative bioavailability of artemisinin using a self-emulsifying drug delivery system (SEDDS). The self-emulsifying drug load, solubility, and emulsifying time were used as the evaluation indices, based on a solubility test and a ternary phase diagram. Optimal Mixture Design in Design-Expert software was used to optimize the prescription of the artemisinin SEDDS. By determining the water distribution coefficient in vitro, combined with the drug concentration-time curve in vivo, a comparison was made of the relative oral bioavailability of the artemisinin SEDDS and the crude drug. The optimal prescription ratio of oleic acid polyethylene glycol glyceride, polyoxyethylene hydrogenated castor oil, and diethylene glycol monoethyl ether in the artemisinin SEDDS was 0.5:0.2:0.3 (wt/wt/wt), with a drug loading capacity of 41.556 mg/g, a solubility of 1.997 mg/mL, and a self-emulsification time of 214 s. The optimal prescription was transparent, slightly yellow, and oil-like. The average loading capacity of artemisinin was 41.912 mg/g, the emulsification time was 231 s, the average particle size was 128.0 nm, the average Zeta potential was -4.29 mV, and the solubility of artemisinin SEDDS in water was 1.997 mg mL-1. It is 33.85 times of the solubility of artemisinin in water, which achieves the purpose of increasing the solubility of artemisinin. The comparison of the oil/water distribution coefficient of the artemisinin SEDDS with that of the crude drug in vitro showed that SEDDS could improve the permeability of artemisinin and promote the absorption in vivo, and the relative bioavailability of the SEDDS agent was at least 1.47 times higher than that of the crude drug. The artemisinin SEDDS could significantly improve the solubility and relative bioavailability of artemisinin.


Subject(s)
Artemisinins , Chemistry, Pharmaceutical , Emulsions , Biological Availability , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Solubility , Administration, Oral
15.
Front Pharmacol ; 14: 1164827, 2023.
Article in English | MEDLINE | ID: mdl-37081969

ABSTRACT

Background: Xihuang Wan (XHW), a purgative and detoxifying agent, is commonly utilized in modern medicine as a treatment and adjuvant therapy for various malignancies, including breast cancer, liver cancer, and lung cancer. A clinical study demonstrated the potential usefulness of the combination of XHW and gemcitabine as a therapy for pancreatic cancer (PC), indicating that XHW's broad-spectrum antitumor herbal combination could be beneficial in the treatment of PC. However, the precise therapeutic efficacy of XHW in treating pancreatic cancer remains uncertain. Aim: This study assessed the biological activity of XHW by optimizing the therapeutic concentration of XHW (Xihuang pills, XHP). We performed cell culture and developed an animal test model to determine whether XHP can inhibit pancreatic cancer (PC). We also applied the well-known widely targeted metabolomics analysis and conducted specific experiments to assess the feasibility of our method in PC therapy. Materials and Methods: We used UPLC/Q-TOF-MS to test XHP values to set up therapeutic concentrations for the in vivo test model. SW1990 pancreatic cancer cells were cultured to check the effect the anti-cancer effects of XHP by general in vitro cell analyses including CCK-8, Hoechst 33258, and flow cytometry. To develop the animal model, a solid tumor was subcutaneously formed on a mouse model of PC and assessed by immunohistochemistry and TUNEL apoptosis assay. We also applied the widely targeted metabolomics method following Western blot and RT-PCR to evaluate multiple metabolites to check the therapeutic effect of XHP in our cancer test model. Results: Quantified analysis from UPLC/Q-TOF-MS showed the presence of the following components of XHP: 11-carbonyl-ß-acetyl-boswellic acid (AKBA), 11-carbonyl-ß-boswellic acid (KBA), 4-methylene-2,8,8-trimethyl-2-vinyl-bicyclo [5.2.0]nonane, and (1S-endo)-2-methyl-3-methylene-2-(4-methyl-3-3-pentenyl)-bicyclo [2.2.1heptane]. The results of the cell culture experiments demonstrated that XHP suppressed the growth of SW1990 PC cells by enhancing apoptosis. The results of the animal model tests also indicated the suppression effect of XHP on tumor growth. Furthermore, the result of the widely targeted metabolomics analysis showed that the steroid hormone biosynthesis metabolic pathway was a critical factor in the anti-PC effect of XHP in the animal model. Moreover, Western blot and RT-PCR analyses revealed XHP downregulated CYP3A4 expression as an applicable targeted therapeutic approach. Conclusion: The results of this study demonstrated the potential of XHP in therapeutic applications in PC. Moreover, the widely targeted metabolomics method revealed CYP3A4 is a potential therapeutic target of XHP in PC control. These findings provide a high level of confidence that XHP significantly acts as a CYP3A4 inhibitor in anti-cancer therapeutic applications.

16.
Chin J Nat Med ; 21(10): 730-744, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37879792

ABSTRACT

Traditionally, Tripterygium hypoglaucum (Levl.) Hutch (THH) are widely used in Chinese folk to treat rheumatoid arthritis (RA). This study aimed to investigate whether the anti-RA effect of THH is related with the gut microbiota. The main components of prepared THH extract were identified by HPLC-MS. C57BL/6 mice with adjuvant-induced arthritis (AIA) were treated with THH extract by gavage for one month. THH extract significantly alleviated swollen ankle, joint cavity exudation, and articular cartilage destruction in AIA mice. The mRNA and protein levels of inflammatory mediators in muscles and plasma indicated that THH extract attenuated inflammatory responses in the joint by blocking TLR4/MyD88/MAPK signaling pathways. THH extract remarkably restored the dysbiosis of the gut microbiota in AIA mice, featuring the increases of Bifidobacterium, Akkermansia, and Lactobacillus and the decreases of Butyricimonas, Parabacteroides, and Anaeroplasma. Furthermore, the altered bacteria were closely correlated with physiological indices and drove metabolic changes of the intestinal microbiota. In addition, antibiotic-induced pseudo germ-free mice were employed to verify the role of the intestinal flora. Strikingly, THH treatment failed to ameliorate the arthritis symptoms and signaling pathways in pseudo germ-free mice, which validates the indispensable role of the intestinal flora. For the first time, we demonstrated that THH extract protects joint inflammation by manipulating the intestinal flora and regulating the TLR4/MyD88/MAPK signaling pathway. Therefore, THH extract may serve as a microbial modulator to recover RA in clincial practice.ver RA in clincial practice.


Subject(s)
Arthritis, Experimental , Gastrointestinal Microbiome , Mice , Animals , Tripterygium , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 4/genetics , Mice, Inbred C57BL , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy
17.
Sci Rep ; 13(1): 15954, 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37743369

ABSTRACT

The outbreak of the 2022 Russia-Ukraine conflict exacerbated the natural gas supply shortage in European countries. European countries restarted coal-fired power plants to maintain economic and social operations. The uneven distribution of coal resources in the world makes coal international trade inevitable. The intricate trade relations between trading countries have formed a coal trade network. When a country's coal exports are limited due to geopolitical factors, it will cause coal supply risks. The risk will spread to more countries along the trade network, eventually leading to the collapse of the trade network. This paper builds a crisis propagation model of the coal supply under the Russia-Ukraine conflict using the cascading failure model. The results showed that the Czech Republic, Ireland, Portugal, and Bulgaria become abnormal as the proportion of coal exports ß increases. When the Russian Federation reduced its coal exports by 80% and countries maintained only 10% coal exports against crisis, 23 European countries were the worst. Iceland, Ireland, Turkey and other countries were spread by the indirect risk and became abnormal countries. The Czech Republic and Bulgaria were spread by multiple risk and became abnormal countries.

18.
Gastroenterol Res Pract ; 2022: 3175935, 2022.
Article in English | MEDLINE | ID: mdl-35958524

ABSTRACT

Background: Recent studies have shown that CagA is considered highly pathogenic to helicobacter pylori (HP) in Western populations. However, in East Asia, CagA positive HP can be up to 90%, but not all patients will lead to gastric cancer. Our research group has found that HP thioredoxin1 (Trx1) may be a marker of high pathogenicity. Here, we investigate whether HP Trx1 exerts high pathogenicity and its internal molecular mechanism. Materials and Methods: We constructed the coculture system of high-Trx1 HP and low-Trx1 HP strains with gastric epithelial cell lines separately and detected the influence of HP strains. The cells were stained by AM/PI, and the cell's mortality was assessed by fluorescence microscope. The cell's supernatants or precipitates were collected to detect the expression of IL6. In addition, the cell's precipitates were collected, and the expression of p-STAT3 was detected by western blot. Furthermore, the cell's supernatants were collected for detecting the expression of 8-OHDG to investigate the extent of DNA damage. Results: The high-Trx1 HP can cause higher mortality of GES-1 cells compared with the low-Trx1 HP group (high-Trx1 HP (4.53 ± 0.56) %, low-Trx1 HP (0.39 ± 0.10) %, P < 0.001). The mRNA and protein level of IL-6 in AGS and GES-1 cells were increased during HP infection, and the expression of IL-6 in the High-Trx1 HP group was much higher than the low-Trx1 HP group. Besides, the expression of p-STAT3 was higher in the HP-positive gastric mucosa. And the expression of p-STAT3 in the high-Trx1 HP group was significantly upregulated compared with the low-Trx1 HP group. Furthermore, the expression of 8-OHDG in the high-Trx1 group was much higher than the low-Trx1 group (high-Trx1 HP (5.47 ± 1.73) ng/ml, low-Trx1 HP (2.89 ± 1.72) ng/ml, P < 0.05). Conclusion: HP Trx1 may play as a marker of high pathogenicity, and the high-Trx1 HP could mediate the pathogenic process of HP infection via the IL6/STAT3 pathway.

19.
Food Funct ; 13(12): 6813-6829, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35671132

ABSTRACT

In this study, novel Poria cocos oligosaccharides (PCO) were prepared by enzymatic degradation, and their polymerization degree was determined to be 2-6 by LC-MS analysis. By monosaccharide composition analysis, methylation assay, FT-IR, and NMR analysis, PCO were deduced to contain the sugar residues of (1 → 2)-ß-D-Glcp, (1 → 2)-α-D-Glcp, and (1 → 4)-α-D-Glcp. Using an HFD-fed mouse model with dyslipidemia, PCO could significantly suppress lipid metabolism disorders, characterized by the reduction of lipid accumulation and inflammatory responses in the blood and liver tissues. Based on the non-targeted metabolomic analysis and Spearman's correlation analysis, we presume that the preventive effect of PCO on dyslipidemia might contribute to the reversal of changed metabolic pathways, which were related to the metabolisms of glycerophospholipids, unsaturated fatty acids, amino acids, choline, bile acids, tryptophan, sphingolipids, and glutathione. Our research shed light on the potential application of PCO for the treatment of dyslipidemia.


Subject(s)
Dyslipidemias , Wolfiporia , Animals , Diet, High-Fat/adverse effects , Dyslipidemias/metabolism , Lipid Metabolism , Liver/metabolism , Metabolome , Mice , Oligosaccharides/metabolism , Spectroscopy, Fourier Transform Infrared
20.
Int J Anal Chem ; 2022: 8279839, 2022.
Article in English | MEDLINE | ID: mdl-35027928

ABSTRACT

In this study, the effects of different processing techniques on the chemical components of Raphani Semen (RS) were evaluated. An established high-performance liquid chromatography (HPLC) method was adopted for the simultaneous determination of glucoraphanin, sinapine thiocyanate, raphanin, and erucic acid in the fried products of Raphani Semen to evaluate the chemical changes during frying processing as well as optimize the best frying technology of Raphani Semen. Then, the chemical components in the fried Raphani Semen were identified by ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A total of 54 compounds in processed Raphani Semen were identified by UPLC-Q-TOF-MS. The results showed that the content of glucoraphanin and sinapine thiocyanate was the highest in the fried products at 130°C for 10 min, and the effect of "Enzyme Killing and Glycosides Preserving" was the best. Therefore, this condition was chosen as the best frying technology of Raphani Semen. This study provided a more scientific basis for evaluation of the quality of Raphani Semen fried products and optimization of the frying technology of Raphani Semen.

SELECTION OF CITATIONS
SEARCH DETAIL