Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Biol Macromol ; 253(Pt 3): 126902, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37714233

ABSTRACT

Roselle is rich in an extensive diversity of beneficial substances, including phenolic acids, amino acids, anthocyanins, vitamins, and flavonoids. Herein, the chemical constituents in Roselle extract (RE) were identified by UPLC-DAD-QTOF-MS. Besides, its inhibitory effects on three digestive enzymes, i.e. α-amylase, α-glucosidase, and pancreatic lipase, were investigated in both in vitro and in vivo. Thirty-three constituents including hibiscus acid, 18 phenolic acids, 2 anthocyanins and 12 flavonoids were identified. The anthocyanins content in RE was 21.44 ± 0.68 %, while the contents of chlorogenic acids, rutin and quercetin were 17.76 ± 2.28 %, 0.31 ± 0.01 % and 0.32 ± 0.01 %, respectively. RE inhibited pancreatic lipase in a non-competitive way with an IC50 value of 0.84 mg/mL. Besides, it demonstrated a mixed-type inhibition on both α-glucosidase and α-amylase with IC50 values of 0.59 mg/mL and 1.93 mg/mL, respectively. Fluorescence quenching assays confirmed the binding of RE to the enzyme proteins. Furthermore, rats pre-treated with RE at doses of 50 and 100 mg/kg body weight (bwt) exhibited significant reductions in fat absorption and improvements in fat excretion through feces. Additionally, the in vivo study revealed that RE was effective in suppressing the increase of blood glucose after starch consumption, while its effects on maltose and sucrose consumption were relatively weak.


Subject(s)
Anthocyanins , Hibiscus , Rats , Animals , Hibiscus/chemistry , alpha-Glucosidases/metabolism , Enzyme Inhibitors/chemistry , Flavonoids/pharmacology , alpha-Amylases/chemistry , Lipase , Plant Extracts/chemistry , Gastrointestinal Agents , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry
2.
Article in English | MEDLINE | ID: mdl-17433764

ABSTRACT

The complexation reactions of brilliant cresyl blue (BCB) with beta-cyclodextrin (beta-CD), mono[2-O-(2-hydroxypropyl)]-beta-CD (2-HP-beta-CD), mono[2-O-(2-hydroxyethyl)]-beta-CD (2-HE-beta-CD), and heptakis(2,6-di-methyl) -beta-CD (DM-beta-CD) were investigated using UV-vis and fluorospectrometry. The complexation between BCB and CDs could inhibit the aggregation of BCB molecules and could cause its absorbance at 634nm gradually increasing. The fluorescence of BCB was also enhanced with the addition of CDs. The fluorescence enhancement was more notable in neutral and acidic media than in basic media. Hildebrand-Benesi equation was used to calculate the formation constants of beta-CDs with BCB based on the fluorescence differences in the CDs solution. The stoichiometry ratio was found to be 1:1. The complexing capacities of beta-CD and its three derivatives were compared and the results followed the order: 2-HP-beta-CD>2-HE-beta-CD>DM-beta-CD>beta-CD. The effect of temperature on the formation of BCB-beta-CD inclusion complexes has also been examined. The results revealed that the formation constants decreased with the increase of temperature from 1038.9 to 491.6l/mol. Enthalpy and entropy values were calculated and the values were -25.77kJ/mol and 35.04J/kmol, respectively. The thermodynamic measurements suggest that the inclusive process was enthalpic favor. The release of high-energy water molecules and Van der Waals force played an important role in the inclusive process.


Subject(s)
Oxazines/chemistry , beta-Cyclodextrins/chemistry , Hydrogen-Ion Concentration , Kinetics , Solutions , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Temperature , Thermodynamics
3.
Oncogenesis ; 7(8): 59, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30100605

ABSTRACT

Notch3 and GATA binding protein 3 (GATA-3) have been, individually, shown to maintain luminal phenotype and inhibit epithelial-mesenchymal transition (EMT) in breast cancers. In the present study, we report that Notch3 expression positively correlates with that of GATA-3, and both are associated with estrogen receptor-α (ERα) expression in breast cancer cells. We demonstrate in vitro and in vivo that Notch3 suppressed EMT and breast cancer metastasis by activating GATA-3 transcription. Furthermore, Notch3 knockdown downregulated GATA-3 and promoted EMT; while overexpression of Notch3 intracellular domain upregulated GATA-3 and inhibited EMT, leading to a suppression of metastasis in vivo. Moreover, inhibition or overexpression of GATA-3 partially reversed EMT or mesenchymal-epithelial transition induced by Notch3 alterations. In breast cancer patients, high GATA-3 expression is associated with higher Notch3 expression and lower lymph node metastasis, especially for hormone receptor (HR) positive cancers. Herein, we demonstrate a novel mechanism whereby Notch3 inhibit EMT by transcriptionally upregulating GATA-3 expression, at least in part, leading to the suppression of cancer metastasis in breast cancers. Our findings expand our current knowledge on Notch3 and GATA-3's roles in breast cancer metastasis.

4.
Crit Rev Oncol Hematol ; 104: 21-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27263934

ABSTRACT

Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , Breast Neoplasms/pathology , Humans , Ligands , Ubiquitination
5.
Article in English | MEDLINE | ID: mdl-25553536

ABSTRACT

Puerarin is the major isoflavone of Puerariae Lobatae Radix. A method for large scale purification of puerarin was developed through resins adsorption and acid hydrolysis. The adsorption properties of six macroporous resins (D101, S-8, H103, X-5, HPD600, AB-8) were compared through the adsorption kinetics and equilibrium adsorption isotherms. Results showed that H103 resin had the best adsorption rate and capacity. The mass transfer zone motion model was further used for analyzing the fixed bed adsorption of H103 resin. Its length of mass transfer zone with 2mg/ml of puerarin in water and 10% ethanol at flow rate of 10ml/min were 41.6 and 47.5cm, while the equilibrium adsorption capacity was 165.03 and 102.88mg/g, respectively. By using 75% ethanol, puerarin could be well desorbed from the resin with recovery of 97.4%. Subsequently, H103 resin was successfully used for puerarin purification from Puerariae Lobatae Radix. The content of total isoflavones and puerarin in the resin adsorption product were 69.25% and 41.78%, respectively, which were about three times increased compared to the crude extract. Then, the product was hydrolyzed by 2.5M HCl at 90°C for 1h. Puerarin with purity of 90% and a byproduct daidzein with purity of 78% were obtained.


Subject(s)
Isoflavones/chemistry , Isoflavones/isolation & purification , Adsorption , Hydrolysis , Pueraria
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 101: 107-11, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23099167

ABSTRACT

A simple and sensitive spectrofluorimetric method was developed for the determination of nitrite in environmental and food samples. The method was based on the selective reaction of o-phenylenediamine with nitrite in acidic medium to form benzotriazole, which exhibited strong fluorescence at 568 nm with excitation at 420 nm in alkaline medium. The detection limit and sensitivity of the proposed method were improved by hydroxypropyl-ß-cyclodextrin through complexation. The linear calibration range for nitrite was 0.04-0.8 µg mL(-1) with a detection limit of 13.6 ng mL(-1) (S/N=3.29). The relative standard deviation for ten determinations of 0.1 and 0.4 µg mL(-1) nitrite were 1.38% and 2.01%, respectively. Twenty-eight coexistent ions were examined, and no serious interference for most of ions was observed. The proposed method was successfully applied for the determination of nitrite in the water, sausage and soil samples with recoveries of 95.5-108.5%. The results were in good agreement with the recommended AOAC method.


Subject(s)
Fluorescent Dyes/chemistry , Meat Products/analysis , Nitrites/analysis , Phenylenediamines/chemistry , Soil/analysis , Water/analysis , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Limit of Detection , Spectrometry, Fluorescence/methods
7.
J Agric Food Chem ; 61(49): 12085-91, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24255970

ABSTRACT

The influence of temperature, pH value, and solvent on the degradation behavior of astilbin was studied by HPLC. Results showed that the degradation of astilbin was pH and temperature dependent, and the isomerization of astilbin to its three stereoisomers was found. The degradation process followed the first-order kinetics model, and the degradation rate k values increased, whereas half-life (t1/2) values declined with the rise of pH and temperature. The stability of astilbin was related to its B-ring substitution. Engeletin with a 4'-hydroxy-substituted B-ring was more stable than astilbin with a 3',4'-dihydroxy-substituted B-ring. The stability of astilbin differed depending on the solvent and followed the order 50% ethanol > ethanol > methanol > 50% methanol > water. In cultural media, astilbin was less stable than in water, which may be related to the presence of metal ions. The stability results of astilbin were confirmed in the extraction of dihydroflavonols from Rhizoma Smilacis Glabrae and may have a guiding function in turtle jelly production.


Subject(s)
Drugs, Chinese Herbal/chemistry , Flavonols/chemistry , Chromatography, High Pressure Liquid , Drug Stability , Hydrogen-Ion Concentration , Kinetics , Temperature
8.
Nat Prod Res ; 27(3): 277-81, 2013.
Article in English | MEDLINE | ID: mdl-22400809

ABSTRACT

Rhizoma Smilacis Glabrae (RSG) and Rhizoma Smilacis Chinae (RSC) are two herbal materials that belong to the same genera and are both listed in the Chinese Pharmacopoeia. Chemical constituents in the two species were compared by HPLC-DAD-MS/MS. Many common constituents were found in both species, including shikimic acid, 5-O-caffeoylshikimic acid, trans-resveratrol, taxifolin, astilbin and its three stereoisomers, engeletin and isoengeletin. However, syringic acid was found only in RSG, while chlorogenic acid was found only in RSC.


Subject(s)
Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Flavonols/chemistry , Glycosides/chemistry , Quercetin/analogs & derivatives , Quercetin/chemistry , Shikimic Acid/analogs & derivatives , Shikimic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL