Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Cancer Metastasis Rev ; 43(1): 29-53, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37453022

ABSTRACT

The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.


Subject(s)
Pancreatic Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Cell Plasticity , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Prognosis , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Tumor Microenvironment
2.
Environ Res ; 263(Pt 1): 120049, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39322055

ABSTRACT

Mangrove forests represent important sources of methane, partly thwarting their ecosystem function as an efficient atmospheric carbon dioxide sink. Many studies have focused on the spatial and temporal variability of methane emissions from mangrove ecosystems, yet little is known about the microbial and physical controls on the release of biogenic methane from tidally influenced mangrove sediments. Here, we show that aerobic methane oxidation is a key microbial process that effectively reduces methane emissions from mangrove sediments. We further demonstrate clear links between the tidal cycle and fluctuations in methane fluxes, with contrasting methane emission rates under different tidal amplitudes. Our data suggest that both the microbial methane oxidation activity and pressure-induced advective transport modulated methane fluxes in the mangrove sediments. Methane oxidation activity is limited by the availability of oxygen in the surface sediments, which in turn is controlled by tidal dynamics, further highlighting the interactive physico-biogeochemical controls on biological methane fluxes. Although we found some molecular evidence for anaerobic methanotrophs in the deeper sediments, anaerobic methane oxidation seems to play only a minor role in the mangrove sediments, with potential rates being two orders of magnitude lower than those of aerobic methane oxidation. Our findings confirmed the importance of surface sediments as biological barrier for methane. Specifically, when sediments were exposed to the air, methane consumption increased by ∼227%, and the methane flux was reduced by ∼62%, compared to inundated conditions. Our data demonstrate how tides can orchestrate the daily rhythm of methane consumption and production within mangrove sediments, thus explaining the temporal variability of methane emissions in the tidally influenced coastal mangrove systems.

3.
Angew Chem Int Ed Engl ; : e202411588, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054700

ABSTRACT

Organic ultralong room temperature phosphorescence (OURTP) materials capable of combining various emission behaviors for diversified optoelectronic properties and applications have recently gained a vigorous development, but it remains a forbidden challenge in designing OURTP molecules with hybrid local and charge-transfer (HLCT) feature, possibly due to the elevated difficulties in simultaneously meeting the stringent requirements of both HLCT and OURTP emitters. Here, through introducing multiple heteroatoms into one-dimensional fused ring of coumarin with moderate charge transfer perturbation in donor-π-acceptor architecture, we demonstrate a HLCT-featured OURTP molecule showing both promoted fluorescence with a quantum yield of 77% in solution and long-lived OURTP with a lifetime of 251 ms in conventional host material used in electroluminescent device. Thus, efficient OURTP organic light-emitting diodes (OLEDs) were fabricated, exhibiting bright electroluminescence with an exciton utilization efficiency of 85% and yellow OURTP lasting over 2 s for afterglow. Impressively, the HLCT OURTP-OLEDs can be further optimized to reach an unprecedented total external quantum efficiency (EQE) of ~12% and OURTP EQE up to 3.11%, representing the highest performance among the reported OURTP-OLEDs. These impressive results highlight the significance to fuse HLCT and OURTP together in enriching OURTP materials and improving the afterglow OLED performances.

4.
Hepatology ; 76(3): 612-629, 2022 09.
Article in English | MEDLINE | ID: mdl-34767673

ABSTRACT

BACKGROUND AND AIMS: HCC is one of the main types of primary liver cancer, with high morbidity and mortality and poor treatment effect. Tripartite motif-containing protein 11 (TRIM11) has been shown to promote tumor formation in lung cancer, breast cancer, gastric cancer, and so on. However, the specific function and mechanism of TRIM11 in HCC remain open for study. APPROACH AND RESULTS: Through clinical analysis, we found that the expression of TRIM11 was up-regulated in HCC tissues and was associated with high tumor node metastasis (TNM) stages, advanced histological grade, and poor patient survival. Then, by gain- and loss-of-function investigations, we demonstrated that TRIM11 promoted cell proliferation, migration, and invasion in vitro and tumor growth in vivo. Mechanistically, RNA sequencing and mass spectrometry analysis showed that TRIM11 interacted with pleckstrin homology domain leucine-rich repeats protein phosphatase 1 (PHLPP1) and promoted K48-linked ubiquitination degradation of PHLPP1 and thus promoted activation of the protein kinase B (AKT) signaling pathway. Moreover, overexpression of PHLPP1 blocked the promotional effect of TRIM11 on HCC function. CONCLUSIONS: Our study confirmed that TRIM11 plays an oncogenic role in HCC through the PHLPP1/AKT signaling pathway, suggesting that targeting TRIM11 may be a promising target for the treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Leucine , Liver Neoplasms/pathology , Pleckstrin Homology Domains , Proteasome Endopeptidase Complex/metabolism , Protein Phosphatase 1/genetics , Proto-Oncogene Proteins c-akt/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin , Ubiquitin-Protein Ligases/metabolism
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(5): 749-757, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37184279

ABSTRACT

The inwardly rectifying potassium channel Kir2.1 is closely associated with many cardiovascular diseases. However, the effect and mechanism of Kir2.1 in diabetic cardiomyopathy remain unclear. In vivo, we use STZ to establish the model, and ventricular structural changes, myocardial inflammatory infiltration, and myocardial fibrosis severity are detected by echocardiography, histological staining, immunohistochemistry, and western blot analysis, respectively. In vitro, a myocardial fibrosis model is established with high glucose. The Kir2.1 current amplitude, intracellular calcium concentration, fibrosis-related proteins, and TGF-ß1/Smad pathway proteins are detected by whole-cell patch clamp, calcium probes, western blot analysis, and immunofluorescence, respectively. The in vivo results show that compared to diabetic cardiomyopathy, zacopride (a Kir2.1 selective agonist) significantly reduces the left ventricular systolic diameter and diastolic diameter, increases the left ventricular ejection fraction and left ventricular short-axis shortening, improves the degree of cell necrosis, and reduces the expression of myocardial interstitial fibrosis protein and collagen fibre deposition area. The in vitro results show that the current amplitude and protein expression of Kir2.1 are both decreased in the high glucose-induced myocardial fibrosis model. Additionally, zacopride significantly upregulates the expression of Kir2.1 and inhibits the expressions of the fibrosis-related proteins α-SMA, collagen I, and collagen III. Activation of Kir2.1 reduces the intracellular calcium concentration and inhibits the protein expressions of TGF-ß1 and p-Smad 2/3. Activation of Kir2.1 can improve myocardial fibrosis induced by diabetic cardiomyopathy, and the possible mechanism may be related to inhibiting Ca 2+ overload and the TGF-ß1/Smad signaling pathway.


Subject(s)
Diabetic Cardiomyopathies , Humans , Diabetic Cardiomyopathies/metabolism , Stroke Volume , Transforming Growth Factor beta1/metabolism , Calcium , Ventricular Function, Left , Collagen/metabolism , Collagen/pharmacology , Fibrosis , Signal Transduction , Glucose/pharmacology
6.
FASEB J ; 34(10): 13376-13395, 2020 10.
Article in English | MEDLINE | ID: mdl-32812265

ABSTRACT

Poststroke depression (PSD) is one of the most common psychiatric diseases afflicting stroke survivors, yet the underlying mechanism is poorly understood. The pathophysiology of PSD is presumably multifactorial, involving ischemia-induced disturbance in the context of psychosocial distress. The homeostasis of glucose metabolism is crucial to neural activity. In this study, we showed that glucose consumption was decreased in the medial prefrontal cortex (mPFC) of PSD rats. The suppressed glucose metabolism was due to decreased glucose transporter-3 (GLUT3) expression, the most abundant and specific glucose transporter of neurons. We also found Morinda officinalis oligosaccharides (MOOs), approved as an antidepressive Chinese medicine, through upregulating GLUT3 expression in the mPFC, improved glucose metabolism, and enhanced synaptic activity, which ultimately ameliorated depressive-like behavior in PSD rats. We further confirmed the mechanism that MOOs induce GLUT3 expression via the PKA/pCREB pathway in PSD rats. Our work showed that MOOs treatment is capable of restoring GLUT3 level to improve depressive-like behaviors in PSD rats. We also propose GLUT3 as a potential therapeutic target for PSD and emphasize the importance of metabolism disturbance in PSD pathology.


Subject(s)
Antidepressive Agents , Depressive Disorder/drug therapy , Glucose Transporter Type 3/metabolism , Morinda/chemistry , Oligosaccharides , Prefrontal Cortex/drug effects , Stroke/complications , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Cells, Cultured , Depressive Disorder/etiology , Depressive Disorder/metabolism , Glucose/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Primary Cell Culture , Rats , Rats, Sprague-Dawley
7.
Hepatology ; 70(1): 241-258, 2019 07.
Article in English | MEDLINE | ID: mdl-30854665

ABSTRACT

Endoplasmic reticulum (ER) stress promotes tumor cell escape from immunosurveillance. However, the underlying mechanisms remain unknown. We hypothesized that ER stress induces hepatocellular carcinoma (HCC) cells to release exosomes, which attenuate antitumor immunity by modulating the expression of programmed death ligand 1 (PD-L1) in macrophages. In this study, we demonstrated that expression of several ER stress markers (glucose-regulated protein 78, activating transcription factor 6, protein kinase R-like ER kinase, and inositol-requiring enzyme 1α) was up-regulated in HCC tissues and negatively correlated with the overall survival and clinicopathological scores in patients with HCC. Expression of ER stress-related proteins positively correlated with CD68+ macrophage recruitment and PD-L1 expression in HCC tissues. High-throughput sequencing analysis identified miR-23a-3p as one of the most abundant microRNAs in exosomes derived from tunicamycin (TM)-treated HCC cells (Exo-TMs). miR-23a-3p levels in HCC tissues negatively correlated with overall survival. Treatment with Exo-TMs up-regulated the expression of PD-L1 in macrophages in vitro and in vivo. Bioinformatics analysis suggests that miR-23a-3p regulates PD-L1 expression through the phosphatase and tensin homolog (PTEN)-phosphatidylinositol 3-kinase-protein kinase B (AKT) pathway. This notion was confirmed by in vitro transfection and coculture experiments, which revealed that miR-23a-3p inhibited PTEN expression and subsequently elevated phosphorylated AKT and PD-L1 expression in macrophages. Finally, coculture of T cells with Exo-TM-stimulated macrophages decreased CD8+ T-cell ratio and interleukin-2 production but increased T-cell apoptosis in vitro. Conclusion: ER-stressed HCC cells release exosomes to up-regulate PD-L1 expression in macrophages, which subsequently inhibits T-cell function through an exosome miR-23a-PTEN-AKT pathway. Our findings provide insight into the mechanism how tumor cells escape from antitumor immunity.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Endoplasmic Reticulum Stress , Liver Neoplasms/metabolism , Macrophages/metabolism , MicroRNAs/metabolism , B7-H1 Antigen/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , China/epidemiology , Exosomes/metabolism , Humans , Liver Neoplasms/immunology , Liver Neoplasms/mortality , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes/physiology
8.
Med Sci Monit ; 25: 2079-2086, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30893293

ABSTRACT

BACKGROUND Long noncoding RNAs (lncRNAs) play important roles in cancer development and therapeutic resistance. However, the role of small nucleolar RNA host gene 16 (SNHG16) in the development of hepatocellular carcinoma (HCC) remains largely unknown. MATERIAL AND METHODS In situ hybridization (ISH) staining was performed to detect the expression level of SNHG16 in HCC tissues and adjacent non-cancerous tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the level of SNHG16 in HCC samples, adjacent non-cancerous tissues and HCC cell lines. Transwell assay was performed to investigate the migration and invasion ability of HCC cells. Cell viability assays were performed to determine the ability of proliferation and sorafenib resistance of HCC cells. RESULTS We found that SNHG16 was upregulated in HCC tissues and cell lines and that it was negatively correlated with survival time in HCC patients. Univariate and multivariate analyses revealed that SNHG16 was a significant and independent predictor for the overall survival of HCC patients. Furthermore, downregulation of SNHG16 inhibited proliferation, migration, invasion, and sorafenib resistance in hepatocellular carcinoma cell lines. CONCLUSIONS Our findings revealed that lncRNA SNHG16 could be used as an oncogene to predict the outcome of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , RNA, Long Noncoding/genetics , Sorafenib/pharmacology , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation , Drug Resistance, Neoplasm , Female , Humans , In Situ Hybridization , Liver Neoplasms/pathology , Male , Middle Aged , Prognosis , RNA Interference , RNA, Long Noncoding/biosynthesis , RNA, Long Noncoding/metabolism , RNA, Small Nucleolar/genetics , Sorafenib/therapeutic use , Transcriptome
9.
Int J Cancer ; 136(5): 1003-12, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25044403

ABSTRACT

Radioresistance is a major challenge during the treatment of breast cancer. A further understanding of the mechanisms of radioresistance could provide strategies to address this challenge. In our study, we compared the expression of miR-200c in four distinct breast cancer cell lines: two representative basal cancer cells (MDA-MB-231 and BT549) vs. two representative luminal cancer cells (MCF-7 and BT474). The results revealed practically lower expression of miR-200c in the two basal cancer cell lines and higher expression of miR-200c in luminal cancer cells compared to the normal breast epithelial cell line MCF-10A. Ectopic expression of miR-200c in MDA-MB-231 cells inhibited irradiation-induced autophagy and sensitized the breast cancer cells to irradiation. We also identified UBQLN1 as a direct functional target of miR-200c involved in irradiation-induced autophagy and radioresistance. In 35 human breast cancer tissue samples, we detected an inverse correlation between the expression of miR-200c vs. UBQLN1 and LC3. These results indicate that the identified miR-200c/UBQLN1-mediated autophagy pathway may help to elucidate radioresistance in human breast cancer and might represent a therapeutic strategy.


Subject(s)
Autophagy/radiation effects , Breast Neoplasms/genetics , Carcinoma, Basal Cell/genetics , Carrier Proteins/antagonists & inhibitors , Cell Cycle Proteins/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Radiation Tolerance , Adaptor Proteins, Signal Transducing , Apoptosis/radiation effects , Autophagy-Related Proteins , Blotting, Western , Breast/metabolism , Breast/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Carcinoma, Basal Cell/metabolism , Carcinoma, Basal Cell/pathology , Carcinoma, Basal Cell/radiotherapy , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation/radiation effects , Cells, Cultured , Epithelial-Mesenchymal Transition , Female , Flow Cytometry , Humans , Immunoenzyme Techniques , In Situ Hybridization , Luciferases/metabolism , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
10.
PeerJ ; 12: e17874, 2024.
Article in English | MEDLINE | ID: mdl-39224819

ABSTRACT

Acute pancreatitis (AP) is a sudden-onset disease of the digestive system caused by abnormal activation of pancreatic enzymes. Dual oxidase 2 (DUOX2) has been found to be elevated in the progression of a variety of inflammatory diseases. Therefore, we analyzed the specific roles of DUOX2 in AP development. Blood samples were collected from of AP patients and healthy people, and the caerulein- stimulated human pancreatic duct cells (H6C7) were utilized to establish an AP cell model. Cell growth and apoptosis were measured using an MTT assay and TUNEL staining. Additionally, RT-qPCR and western blot assays were conducted to assess the RNA and protein expressions of the cells. ELISA kits were used to determine TNF-α, IL-6, IL-8, and IL-1ß levels. The interaction between DUOX2 and miR-605-3p was predicted using the Targetscan database and confirmed by dual-luciferase report assay. We found that DUOX2 increased while miR-605-3p decreased in the blood of AP patients and caerulein-stimulated H6C7 cells. DUOX2 was targeted by miR-605-3p. Furthermore, DUOX2 knockdown or miR-605-3p overexpression promoted cell viability, decreased the TNF-α, IL-6, IL-8, and IL-1ß levels, and inhibited apoptosis rate in caerulein-stimulated H6C7 cells. DUOX2 knockdown or miR-605-3p overexpression also increased the Bcl-2 protein levels and down-regulated Bax, cleaved-caspase-1, NLRP3 and p-p65. Interestingly, DUOX2 overexpression reversed the miR-605-3p mimic function in the caerulein-treated H6C7 cells. In conclusion, our research demonstrated that DUOX2 knockdown relieved the injury and inflammation in caerulein-stimulated H6C7 cells.


Subject(s)
Ceruletide , Dual Oxidases , MicroRNAs , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pancreatitis , Pyroptosis , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Dual Oxidases/metabolism , Dual Oxidases/genetics , Pancreatitis/pathology , Pancreatitis/metabolism , Pancreatitis/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B/metabolism , Signal Transduction , Male , Cell Line , Pancreatic Ducts/pathology , Pancreatic Ducts/metabolism , Apoptosis , Female , Middle Aged
11.
Phytomedicine ; 122: 155128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37839227

ABSTRACT

BACKGROUND: Pancreatic cancer is an extremely malignant digestive tumor, however, owing to its high drug resistance of pancreatic cancer, the search for more effective anti-pancreatic cancer drugs is urgently needed. Lycorine, an alkaloid of natural plant origin, exerts antitumor effects on a variety of tumors. PURPOSE: This study aimed to investigate the therapeutic effect of lycorine on pancreatic cancer and elucidate its potential molecular mechanism. METHODS: Two pancreatic cancer cell lines, PANC-1 and BxPC-3, were used to investigate the therapeutic effects of lycorine on pancreatic cancer in vitro using the CCK8 assay, colony formation assay, 5-Ethynyl-2'- deoxyuridine (EdU) incorporation assay, flow cytometry, and western blotting. Transcriptome sequencing and gene set enrichment analysis (GSEA) were used to analyze the differentially expressed genes and pathways after lycorine treatment. Molecular docking, quantitative real-time PCR (qRT-PCR), oil red O staining, small interfering RNA (siRNA) transfection, and other experiments were performed to further validate the differentially expressed genes and pathways. In vivo experiments were conducted to investigate lycorine's inhibitory effects and toxicity on pancreatic cancer using a tumor-bearing mouse model. RESULTS: Lycorine inhibited the proliferation of pancreatic cancer cells, caused G2/M phase cycle arrest and induced apoptosis. Transcriptome sequencing and GSEA showed that lycorine inhibition of pancreatic cancer was associated with fatty acid metabolism, and aldehyde dehydrogenase 3A1 (ALDH3A1) was a significantly enriched target in the fatty acid metabolism process. ALDH3A1 expression was significantly upregulated in pancreatic cancer and was closely associated with prognosis. Molecular docking showed that lycorine binds strongly to ALDH3A1. Further studies revealed that lycorine inhibited the fatty acid oxidation (FAO) process in pancreatic cancer cells and induced cell growth inhibition and apoptosis through ALDH3A1. Lycorine also showed significant suppressive effects in tumor-bearing mice. Importantly, it did not result in significant toxicity to liver and kidney of mice, demonstrating its therapeutic potential as a safe antitumor agent. CONCLUSION: Lycorine inhibited pancreatic cancer cell proliferation, blocked the cell cycle, and induced apoptosis by targeting ALDH3A1. FAO inhibition was identified for the first time as a possible mechanism for the anticancer effects of lycorine. These findings enrich the theory of targeted therapy for pancreatic cancer, expand our understanding of the pharmacological targets of lycorine, and provide a reference for exploring its natural components.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Animals , Mice , Molecular Docking Simulation , Cell Line, Tumor , Transcriptome , Cell Proliferation , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Apoptosis , RNA, Small Interfering/pharmacology , Fatty Acids , Pancreatic Neoplasms
12.
J Ethnopharmacol ; 328: 118128, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38561056

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY: We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS: We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS: A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS: The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.


Subject(s)
Drugs, Chinese Herbal , Glioma , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Network Pharmacology , Mice, Inbred C57BL , Signal Transduction , Glioma/drug therapy , Cell Proliferation
13.
Sci Total Environ ; 953: 175972, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39233079

ABSTRACT

Eukaryotic microbes play key ecological roles in riverine ecosystems. Amplicon sequencing has greatly facilitated the identification and characterization of eukaryotic microbial communities. Currently, 18S rRNA gene V4 and V9 hypervariable regions are widely used for sequencing eukaryotic microbes. Identifying optimal regions for the profiling of size-fractional eukaryotic microbial communities is critical for microbial ecological studies. In this study, we spanned three rivers with typical natural-human influenced transition gradients to evaluate the performance of the 18S rRNA gene V4 and V9 hypervariable regions for sequencing size-fractional eukaryotic microbes (>180 µm, 20-180 µm, 5-20 µm, 3-5 µm, 0.8-3 µm). Our comparative analysis revealed that amplicon results depend on the specific species and microbial size. The V9 region was most effective for detecting a broad taxonomic range of species. The V4 region was superior to the V9 region for the identification of microbes in the minor 3 µm and at the family and genus levels, especially for specific microbial groups, such as Labyrinthulomycetes. However, the V9 region was more effective for studies of diverse eukaryotic groups, including Archamoebae, Heterolobosea, and Microsporidia, and various algae, such as Haptophyta, Florideophycidae, and Bangiales. Our results highlight the importance of accounting for potential misclassifications when employing both V4 and V9 regions for the identification of microbial sequences. The use of optimal regions for amplification could enhance the utility of amplicon sequencing in environmental studies. The insights gained from this work will aid future studies that employ amplicon-based identification approaches for the characterization of eukaryotic microbial communities and contribute to our understanding of microbial ecology within aquatic systems.


Subject(s)
Eukaryota , RNA, Ribosomal, 18S , Rivers , RNA, Ribosomal, 18S/genetics , Rivers/microbiology , Eukaryota/genetics , Microbiota/genetics , Ecosystem , Environmental Monitoring/methods
14.
Adv Mater ; : e2409361, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39267460

ABSTRACT

The combination of advanced photoluminescence characteristics to photochromism is highly attractive in preparing high-performance multifunctional photo-responsive materials for optoelectronic applications. However, this is rather challenging in material design owing to the limited mechanism understanding and construction principles. Here, an effective strategy to integrate photochromism and afterglow emission in carbon dots (CDs) is proposed through embedding naphthaleneimide (NI) structure in CDs followed by polyvinylpyrrolidone (PVP) encapsulation. The NI-structured CDs-PVP shows intrinsic photochromism owing to the in situ formation of NI-radical anions and controllable multi-stimuli-responsive afterglow behaviors related to the oxygen-trigged triplet exciton quenching and Förster resonance energy transfer (FRET) from the pristine CDs to the photoactivated CDs radicals. Notably, a wide range of appearance colors from colorless to brown, luminescence color transition from blue to yellow, and much elongated afterglow lifetime up to 253 ms are observed. With the extraordinary stimuli-chromic and stimuli-luminescent CDs-PVP film dynamically responsive to multiple external stimuli, reversible secure snapchat, data encryption/decryption and synaptic imaging recognition are realized. These findings demonstrate a fundamental principle to design multi-stimuli-responsive photochromic CDs with afterglow, providing important understandings on the synergic mechanism of dynamic photochromism and emission behaviors and thereby expanding their applications in advanced information anti-counterfeiting and artificial intelligence.

15.
Adv Mater ; 36(41): e2404769, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39135413

ABSTRACT

Organic afterglow with long-persistent luminescence (LPL) after photoexcitation is highly attractive, but the realization of narrowband afterglow with small full-width at half-maximum (FWHM) is a huge challenge since it is intrinsically contradictory to the triplet- and solid-state emission nature of organic afterglow. Here, narrow-band, long-lived, and full-color organic LPL is realized by isolating multi-resonant thermally activated delayed fluorescent (MR-TADF) fluorophores in a glassy steroid-type host through a facile melt-cooling treatment. Such prepared host becomes capable of exciton dissociation and recombination (EDR) upon photoirradiation for both long-lived fluorescence and phosphorescence; and, the efficient Förster resonance energy transfer (FRET) from the host to various MR-TADF emitters leads to high-performance LPL, exhibiting small FWHM of 33 nm, long persistent time over 10 s, and facile color-tuning in a wide range from deep-blue to orange (414-600 nm). Moreover, with the extraordinary narrowband LPL and easy processability of the material, centimeter-scale flexible optical waveguide fibers and integrated FWHM/color/lifetime-resolved multilevel encryption/decryption devices have been designed and fabricated. This novel EDR and singlet/triplet-to-singlet FRET strategy to achieve excellent LPL performances illustrates a promising way for constructing flexible organic afterglow with easy preparation methods, shedding valuable scientific insights into the design of narrow-band emission in organic afterglow.

16.
PeerJ ; 11: e15774, 2023.
Article in English | MEDLINE | ID: mdl-37547718

ABSTRACT

Objective: To investigate the expression and correlation of COX-2 and NUCB1 in colorectal adenocarcinoma and adjacent tissues. Methods: The expression of COX-2 and NUCB1 and their effects on prognosis were predicted using bioinformatics. Immunohistochemistry was used to identify the expression of two molecules in 56 cases of colorectal adenocarcinoma and the surrounding tissues. The expression of two molecules and their association with clinicopathological variables were examined using the chi-square test. The association between COX-2 and NUCB1 was investigated using the Spearman correlation test. Results: The STRING database revealed that COX-2 and NUCB1 were strongly linked. According to the UALCAN and HPA database, COX-2 was upregulated while NUCB1 was downregulated in colorectal adenocarcinoma, both at the protein and gene levels. The OS times for COX-2 and NUCB1 high expression, however, exhibited the same patterns. The rate of positive COX-2 immunohistochemical staining in cancer tissues was 69.64% (39/56), which was significantly higher than the rate in healthy tissues 28.57% (16/56). NUCB1 was expressed positively in cancer tissues at a rate of 64.29% (36/56) compared to just 19.64% (11/56) in neighboring tissues. The positive expression levels of COX-2 and NUCB1 were both closely related to clinical stage, differentiation degree, and lymphatic metastases (P < 0.05). In colorectal cancer, COX-2 and NUCB1 expression were significantly correlated (rs = 0.6312, P < 0.001). Conclusion: Both COX-2 and NUCB1 are overexpressed and significantly associated in colorectal adenocarcinoma.


Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Cyclooxygenase 2 , Nucleobindins , Humans , Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Cyclooxygenase 2/genetics , Immunohistochemistry , Prognosis , Nucleobindins/genetics
17.
Sci Total Environ ; 863: 160890, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36521615

ABSTRACT

Glomalin-related soil protein (GRSP) plays an important role in soil metal sequestration in coastal wetlands. Additionally, it can release dissolved organic matter (GDOM) in water-soaked condition. The purpose of this study was to clarify the variation of GRSP's heavy metal immobilisation capacity at soil profiles of coastal wetland, and explore the compositional characteristics of GDOM and its influence on the heavy metals' environmental behaviour. The results indicated that the metal immobilisation capacity of GRSP decreased with increasing burial depth. The contributions of GRSP to soil Cr, As, and Pb were higher in both mangrove soils (K. obovata and A. marina forests) than in the mudflat. Oxygen-containing functional groups of GRSP (CO, -COO-, etc.) played a positive role in heavy metals accumulation. Redundancy analysis (RDA) showed that high soil pH was not conducive to the enrichment of heavy metals by GRSP. Besides, the concentrations of GRSP-Fe showed a significant positive correlation with the concentrations of other metals (Cu, As, and Pb) in GRSP. It is speculated that the Fe minerals in GRSP contributed the enrichment of heavy metals. Based on PARAFAC modelling, four fluorescent components of GDOM were identified, including three humic-like fluorescent components and one tyrosine-like fluorescent component. The contributions of GDOM to GRSP-bound heavy metals fluctuated between 4.05 % and 88.80 %, which could enhance the fluidity of heavy metals in water and weaken the soil heavy metal immobilisation capacity of GRSP. High salinity exerted an inhibitory effect on the heavy metal content of the GDOM. This study comprehensively explored the potential of GRSP to immobilise heavy metals in wetland soils and highlighted the potential heavy metal risks associated with the GDOM component in water, which could contribute to the multidimensional assessment and control of heavy metal pollution in coastal wetlands.


Subject(s)
Metals, Heavy , Soil Pollutants , Wetlands , Soil/chemistry , Lead/analysis , Fungal Proteins/chemistry , Metals, Heavy/analysis , Water/analysis , Soil Pollutants/analysis
18.
ACS Appl Mater Interfaces ; 15(42): 49623-49632, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37816127

ABSTRACT

Organic materials featuring circularly polarized luminescence (CPL) and/or afterglow emission represent an active research frontier with promising applications in various fields, but the achievement of high-performance CPL organic afterglow (CPOA) remains a huge challenge due to the intrinsic contradictions between the luminescent lifetime/dissymmetry factor (glum) and phosphorescent quantum efficiency (PhQY). Herein, we report a simple and universal approach to design efficient CPOA from amorphous copolymers by incorporating chiral chromophores into a nonconjugated clusterization-triggered emissive polymer with plenty of hydron-bonding interactions, followed by aggregation engineering using water dissolution and evaporation. With this chiral copolymerization and aggregation engineering (CCAE) strategy, high-performance CPOA polymers with PhQYs of up to 6.32%, ultralong lifetimes of over 650 ms, glum values of 3.54 × 10-3, and the highest figure-of-merit were achieved at room temperature. Given the impressive CPOA performance of these polymers, the applications in multilevel data anticounterfeiting and reversible displays with high stability were demonstrated. These findings through the CCAE strategy to overcome the inherent restraints of CPOA materials lay the foundation for the development of amorphous polymers with superior CPOA, significantly expanding the understanding of CPL and the design of organic afterglow materials.

19.
Neurochem Res ; 37(3): 665-70, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22160787

ABSTRACT

Recent studies suggest that angiogenesis and vascular endothelial growth factor (VEGF) are involved in the pathophysiology of epilepsy. However, relatively little data are available linking placenta growth factor (PIGF) with epilepsy. In this study, we assessed concentrations of PIGF in cerebrospinal fluid (CSF) of 60 epileptic patients and 24 non-seizure subjects using sandwich enzyme-linked immunosorbent assays. Epileptic patients in general had higher concentration of CSF-PIGF than controls (7.95 ± 0.88 ng/l vs. 5.87 ± 0.79 ng/l, P < 0.01). CSF-PIGF level in secondary epileptic patients (8.59 ± 1.26 ng/l) was higher than that in idiopathic epileptic patients (7.62 ± 0.20 ng/l) (P < 0.05). In idiopathic epilepsy, CSF-PIGF level in patients with high seizure frequency was higher than those in patients with low seizure frequency and seizure-free in recent 3 years (7.78 ± 0.23 ng/l vs. 7.49 ± 0.09 ng/l and 7.59 ± 0.10 ng/l, P < 0.05). Concentration of CSF-PIGF in patients with a disease duration of > 5 years was higher than those in patients with durations of 1-5 years and <1 year (7.72 ± 0.20 ng/l vs. 7.52 ± 0.09 ng/l and 7.41 ± 0.07 ng/l, P < 0.05). These results indicate that preexisting brain damage, seizure frequency and disease duration are important factors contributing to elevated PIGF.


Subject(s)
Epilepsy/cerebrospinal fluid , Pregnancy Proteins/cerebrospinal fluid , Adolescent , Adult , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Placenta Growth Factor , Young Adult
20.
Front Psychiatry ; 13: 827667, 2022.
Article in English | MEDLINE | ID: mdl-35308874

ABSTRACT

Objective: Early life adversity is a risk factor for depression in adulthood; however, the underlying mechanisms are not well understood. This study aims to investigate the effect of DNA methylation of DRD2 gene on early life stress-induced depression in adult rats. Methods: Newborn Sprague-Dawley rats were randomly assigned to four groups: maternal deprivation group (MD), chronic unpredictable stress (CUS) group, maternal deprivation plus chronic unpredictable stress (MD/CUS) group, and normal control group (NOR). Behaviors were measured by open field test (OFT), sucrose preference test (SPT), and Original Research Article forced swimming test (FST). Fecal CORT level was detected by ELISA. Bisulfite amplicon sequencing PCR was used to assess methylation levels of DRD2 promoter. Results: CUS and MD/CUS rats had a significantly shorter total distance, longer immobility time, and higher CORT level, while MD and MD/CUS rats had a significantly lower percentage of central distance, more feces, lower rate of sucrose preference, and lower levels of DRD2 protein and mRNA in the VTA than NOR rats. CUS rats showed a significantly higher DRD2 mRNA and protein levels in the VTA than NOR rats. CUS, MD, and MD/CUS rats showed a significantly higher level of DRD2 promoter methylation than NOR rats. CORT level was significantly correlated with the sucrose preference rate in SPT, the immobility time in FST, the total distance, and the number of fecal pellets in OFT. DRD2 protein level was significantly correlated with the sucrose preference rate and the number of fecal pellets. DRD2 mRNA level was significantly correlated with the percentage of central distance and the number of fecal pellets in OFT. The level of DRD2 promoter methylation was significantly correlated with the sucrose preference rate, immobility time, total distance, the percentage of central distance, and the number of fecal pellets. Conclusions: Early life MD increased vulnerability to stress-induced depressive-like behavior in adult rats. Enhanced DRD2 promoter methylation in the VTA may increase the susceptibility to depression.

SELECTION OF CITATIONS
SEARCH DETAIL