Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Org Chem ; 89(9): 6085-6099, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38648720

ABSTRACT

Herein, we disclose a facile synthetic strategy to access an important class of drug molecules that contain chiral 1,2-amino alcohol functionality utilizing highly effective ruthenium-catalyzed asymmetric transfer hydrogenation of unprotected α-ketoamines. Recently, the COVID-19 pandemic has caused a crisis of shortage of many important drugs, especially norepinephrine and epinephrine, for the treatment of anaphylaxis and hypotension because of the increased demand. Unfortunately, the existing technologies are not fulfilling the worldwide requirement due to the existing lengthy synthetic protocols that require additional protection and deprotection steps. We identified a facile synthetic protocol via a highly enantioselective one-step process for epinephrine and a two-step process for norepinephrine starting from unprotected α-ketoamines 1b and 1a, respectively. This newly developed enantioselective ruthenium-catalyzed asymmetric transfer hydrogenation was extended to the synthesis of many 1,2-amino alcohol-containing drug molecules such as phenylephrine, denopamine, norbudrine, and levisoprenaline, with enantioselectivities of >99% ee and high isolated yields.


Subject(s)
Amino Alcohols , Ruthenium , Hydrogenation , Catalysis , Amino Alcohols/chemistry , Amino Alcohols/chemical synthesis , Ruthenium/chemistry , Stereoisomerism , Molecular Structure , Amines/chemistry
2.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930779

ABSTRACT

7-Bromo-4-chloro-1H-indazol-3-amine is a heterocyclic fragment used in the synthesis of Lenacapavir, a potent capsid inhibitor for the treatment of HIV-1 infections. In this manuscript, we describe a new approach to synthesizing 7-bromo-4-chloro-1H-indazol-3-amine from inexpensive 2,6-dichlorobenzonitrile. This synthetic method utilizes a two-step sequence including regioselective bromination and heterocycle formation with hydrazine to give the desired product in an overall isolated yield of 38-45%. The new protocol has been successfully demonstrated on hundred-gram scales without the need for column chromatography purification. This new synthesis provides a potential economical route to the large-scale production of this heterocyclic fragment of Lenacapavir.

3.
J Org Chem ; 86(15): 10320-10329, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34251206

ABSTRACT

An efficient, inexpensive, and reliable synthesis of diaminomaleonitrile (DAMN, 1) is described starting from readily available acetone cyanohydrin as the source of hydrogen cyanide (HCN). Diaminomaleonitrile (DAMN) is known to be an important intermediate in heterocyclic and medicinal chemistry as well as being a possible precursor for the origin of life's hypothesis within prebiotic chemistry. The mechanism of its formation through organosulfur catalysis has been investigated by electrospray ionization mass spectrometry (ESI-MS) using two newly synthesized cationic "marker" molecules as a tool that allows for sensitive detection. As a result, the proposed mechanism of a thiocyanate-mediated synthesis of the HCN tetramer DAMN starting from organic disulfides was confirmed.


Subject(s)
Chemistry, Pharmaceutical , Disulfides , Catalysis , Spectrometry, Mass, Electrospray Ionization
4.
J Org Chem ; 84(6): 3370-3376, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30786209

ABSTRACT

Ciprofloxacin is a broad-spectrum antibiotic that is recognized as one of the World Health Organization's Essential Medicines. It is particularly effective in the treatment of Gram-negative bacterial infections associated with urinary, respiratory, and gastrointestinal tract infections. A streamlined and high yielding continuous synthesis of ciprofloxacin has been developed, which employs a chemoselective C-acylation step that precludes the need for intermediate isolations, extractions, or purifications. The end-to-end process has a residence time of 4.7 min with a 15.8 g/h throughput at laboratory scale and an overall isolated yield of 83%.


Subject(s)
Amides/chemistry , Ciprofloxacin/chemical synthesis , Cyclopropanes/chemistry , Vinyl Compounds/chemistry , Ciprofloxacin/chemistry , Molecular Structure , Stereoisomerism
5.
Angew Chem Int Ed Engl ; 57(24): 7181-7185, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29756689

ABSTRACT

Dolutegravir (DTG), an important active pharmaceutical ingredient (API) used in combination therapy for the treatment of HIV, has been synthesized in continuous flow. By adapting the reported GlaxoSmithKline process chemistry batch route for Cabotegravir, DTG was produced in 4.5 h in sequential flow operations from commercially available materials. Key features of the synthesis include rapid manufacturing time for pyridone formation, one-step direct amidation of a functionalized pyridone, and telescoping of multiple steps to avoid isolation of intermediates and enable for greater throughput.


Subject(s)
HIV Integrase Inhibitors/chemical synthesis , Heterocyclic Compounds, 3-Ring/chemical synthesis , Amides/chemical synthesis , Amides/chemistry , Combinatorial Chemistry Techniques/economics , Combinatorial Chemistry Techniques/methods , HIV Infections/drug therapy , HIV Integrase Inhibitors/chemistry , Heterocyclic Compounds, 3-Ring/chemistry , Humans , Oxazines , Piperazines , Pyridones/chemical synthesis , Pyridones/chemistry , Time Factors
6.
Beilstein J Org Chem ; 14: 583-592, 2018.
Article in English | MEDLINE | ID: mdl-29623120

ABSTRACT

Numerous synthetic methods for the continuous preparation of fine chemicals and active pharmaceutical ingredients (API's) have been reported in recent years resulting in a dramatic improvement in process efficiencies. Herein we report a highly efficient continuous synthesis of the antimalarial drug hydroxychloroquine (HCQ). Key improvements in the new process include the elimination of protecting groups with an overall yield improvement of 52% over the current commercial process. The continuous process employs a combination of packed bed reactors with continuous stirred tank reactors for the direct conversion of the starting materials to the product. This high-yielding, multigram-scale continuous synthesis provides an opportunity to achieve increase global access to hydroxychloroquine for treatment of malaria.

7.
J Org Chem ; 82(2): 1218-1223, 2017 01 20.
Article in English | MEDLINE | ID: mdl-27997193

ABSTRACT

A concise and efficient synthesis of (3R,3aS,6aR)-hexahydrofuro[2,3-b]furan-3-ol, a key building block for several clinical and experimental HIV protease inhibitors including the highly important drug darunavir, was achieved via a one-pot procedure using furan and Cbz-protected glycol aldehyde as starting materials. A [2+2]-photocycloaddition between both reactants which can be prepared from wood-based starting materials according to the principles of xylochemistry, followed by hydrogenation and lipase-catalyzed kinetic resolution afforded the target compound in high yield and up to 99% ee.


Subject(s)
Chemistry, Organic/methods , Furans/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , Furans/chemistry , Molecular Structure , Stereoisomerism
8.
Bioorg Med Chem ; 25(23): 6203-6208, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29054711

ABSTRACT

The efficiency gains produced by continuous-flow systems in conducting photochemical transformations have been extensively demonstrated. Recently, these systems have been used in developing safe and efficient methods for photo-oxidations using singlet oxygen generated by photosensitizers. Much of the previous work has focused on the use of homogeneous photocatalysts. The development of a unique, packed-bed photoreactor system using immobilized rose bengal expands these capabilities as this robust photocatalyst allows access to and elaboration from these highly useful building blocks without the need for further purification. With this platform we were able to demonstrate a wide scope of singlet oxygen ene, [4+2] cycloadditions and heteroatom oxidations. Furthermore, we applied this method as a strategic element in the synthesis of the high-volume antimalarial artemisinin.


Subject(s)
Antimalarials/chemistry , Artemisinins/chemistry , Antimalarials/chemical synthesis , Artemisinins/chemical synthesis , Catalysis , Cycloaddition Reaction , Light , Oxidation-Reduction , Photosensitizing Agents/chemistry , Rose Bengal/chemistry , Singlet Oxygen/chemistry
9.
J Org Chem ; 80(3): 1915-9, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25522005

ABSTRACT

A direct and efficient total synthesis has been developed for telmisartan, a widely prescribed treatment for hypertension. This approach brings together two functionalized benzimidazoles using a high-yielding Suzuki reaction that can be catalyzed by either a homogeneous palladium source or graphene-supported palladium nanoparticles. The ability to perform the cross-coupling reaction was facilitated by the regio-controlled preparation of the 2-bromo-1-methylbenzimidazole precursor. This convergent approach provides telmisartan in an overall yield of 72% while circumventing many issues associated with previously reported processes.


Subject(s)
Benzimidazoles/chemistry , Benzoates/chemistry , Benzoates/chemical synthesis , Cross-Linking Reagents/chemistry , Benzimidazoles/chemical synthesis , Catalysis , Molecular Structure , Stereoisomerism , Telmisartan
10.
Org Process Res Dev ; 28(1): 273-280, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38268773

ABSTRACT

MMV693183 is a promising antimalarial drug candidate that works for uncomplicated malaria treatment and resistance management. Herein, we report an efficient and highly regioselective synthesis of MMV693183. This novel synthetic method highlights a three-step route with an overall yield of 46% from readily available starting materials. The key to the success lies in (1) utilizing the subtle difference of the two amino groups in the starting material (S)-propane-1,2-diamine dihydrochloride without amino protection and (2) identifying the L-(+)-tartaric acid as the counter acid for the organic salt formation, yielding the desired regioisomer up to 100:0. The efficient and scalable three-step protocol operates under mild conditions with a high chemo/regioselectivity, providing effective access to MMV693183.

11.
Org Process Res Dev ; 28(4): 1213-1223, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38660377

ABSTRACT

Visceral leishmaniasis (VL), a parasitic, poverty-linked, neglected disease, is endemic across multiple regions of the world and fatal if untreated. There is an urgent need for a better and more affordable treatment for VL. DNDI-6148 is a promising drug candidate being evaluated for the treatment of VL; however, the current process for producing the key intermediate of DNDI-6148, 6-amino-1-hydroxy-2,1-benzoxaborolane, is expensive and difficult to scale up. Herein, we describe two practical approaches to synthesizing 6-amino-1-hydroxy-2,1-benzoxaborolane from inexpensive and readily available raw materials. Starting with 4-tolunitrile, the first approach is a five-step sequence involving a Hofmann rearrangement, resulting in an overall yield of 40%. The second approach utilizes 2-methyl-5-nitroaniline as the starting material and features borylation of aniline and continuous flow hydrogenation as the key steps, with an overall yield of 46%. Both routes bypass the nitration of 1-hydroxy-2,1-benzoxaborolane, which is challenging and expensive to scale. In particular, the second approach is more practical and scalable because of the mild operating conditions and facile isolation process.

13.
Beilstein J Org Chem ; 9: 2570-8, 2013.
Article in English | MEDLINE | ID: mdl-24367421

ABSTRACT

2-Chloro-3-amino-4-picoline (CAPIC) is a strategic building block for the preparation of nevirapine, a widely-prescribed non-nucleosidic reverse transcriptase inhibitor for the treatment of HIV-infected patients. A continuous synthesis to the bromo derivative of a CAPIC intermediate, 2-bromo-4-methylnicotinonitrile, that terminates in a dead-end crystallization is described. The route uses inexpensive, acyclic commodity-based raw materials and has the potential to enable lower cost production of nevirapine as well as other value added structures that contain complex pyridines. The route terminates in a batch crystallization yielding high purity CAPIC. This outcome is expected to facilitate regulatory implementation of the overall process.

14.
Org Process Res Dev ; 27(9): 1641-1651, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37736135

ABSTRACT

An efficient gram-scale synthesis of the antituberculosis agent pretomanid using straightforward chemistry, mild reaction conditions, and readily available starting materials is reported. Four different protecting groups on the glycidol moiety were investigated for their technical feasibility and ability to suppress side reactions. Starting from readily available protected (R)-glycidols and 2-bromo-4-nitro-1H-imidazole, pretomanid could be prepared in a linear three-step synthesis in up to 40% isolated yield. In contrast to most syntheses reported so far, deprotection and cyclization were performed in a one-pot fashion without any hazardous steps or starting materials.

15.
Org Process Res Dev ; 27(11): 2146-2159, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38025988

ABSTRACT

Bedaquiline (BDQ) is an important drug for treating multidrug-resistant tuberculosis (MDR-TB), a worldwide disease that causes more than 1.6 million deaths yearly. The current synthetic strategy adopted by the manufacturers to assemble this molecule relies on a nucleophilic addition reaction of a quinoline fragment to a ketone, but it suffers from low conversion and no stereoselectivity, which subsequently increases the cost of manufacturing BDQ. The Medicines for All Institute (M4ALL) has developed a new reaction methodology to this process that not only allows high conversion of starting materials but also results in good diastereo- and enantioselectivity toward the desired BDQ stereoisomer. A variety of chiral lithium amides derived from amino acids were studied, and it was found that lithium (R)-2-(methoxymethyl)pyrrolidide, obtained from d-proline, results in high assay yield of the desired syn-diastereomer pair (82%) and with considerable stereocontrol (d.r. = 13.6:1, e.r. = 3.6:1, 56% ee), providing BDQ in up to a 64% assay yield before purification steps toward the final API. This represents a considerable improvement in the BDQ yield compared to previously reported conditions and could be critical to further lowering the cost of this life-saving drug.

16.
Org Process Res Dev ; 26(1): 82-90, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35095258

ABSTRACT

Pyrrolo[2,1-f][1,2,4]triazine (1) is an important regulatory starting material in the production of the antiviral drug remdesivir. Compound 1 was produced through a newly developed synthetic methodology utilizing simple building blocks such as pyrrole, chloramine, and formamidine acetate by examining the mechanistic pathway for the process optimization exercise. Triazine 1 was obtained in 55% overall yield in a two-vessel-operated process. This work describes the safety of the process, impurity profiles and control, and efforts toward the scale-up of triazine for the preparation of kilogram quantity.

17.
ACS Omega ; 7(8): 7223-7228, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252712

ABSTRACT

A concise and practical synthesis has been developed to provide the 8-fluoro-5-hydroxy-3,4-diydrocarbostyril (8-FDC) fragment of OPC-167832 in 41% yield and in >99% purity over four steps from 3-amino-4-fluorophenol. The key feature of this process is the development of a telescoped one-pot synthesis of the quinolone via a chemoselective amidation/acid-induced cyclization that allows for simple product isolation without the need for column chromatography.

18.
ACS Omega ; 6(41): 27216-27224, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34693141

ABSTRACT

We report the influence of substituents and physical conditions on activation energies for the noncatalyzed amination (C-N cross-coupling reactions) of aryl halides. We uncover a significant correlation between the barrier heights of the C-N bond formation and Hammett σ parameters-a formal measure of the electron-withdrawing or -donating ability of substituents on the aryl halides. Our results indicate that such correlations are useful predictive tools for the amination of aryl halides over a wide range of substituent types. From 54 cases studied (six substituents occupying specific positions relative to halogen atoms), the 2-COOHPhI + NH2 n Pr amination reaction is predicted to possess the lowest noncatalyzed activation free energy (135.6 kJ mol-1) using the B3LYP method. The lower barriers for the 2-COOHPhX (for X = Cl, Br, and I) compounds are shown to originate from collusion between steric and electronic effects-specifically, the momentary formation of a hydrogen bond between an oxygen site on the ortho-COOH and the lone pair of the entering amine. Internal reaction coordinate (IRC) path calculations afforded us these and other key insights into the nature of the reactions. The control exerted by substituents on the arrangement of the transition state structure, as well as the sensitivity of the reaction barriers to temperature and solvent polarity, are discussed. These results offer new perspectives from which to assess the nature of the C-N bond formation and suggest new avenues for future exploration, especially in progress toward the metal-free amination of aryl compounds.

19.
Org Process Res Dev ; 25(4): 789-798, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-37556249

ABSTRACT

Di-tert-butyl oxymethyl phosphonates were investigated regarding their suitability for preparing the active pharmaceutical ingredient tenofovir (PMPA). First, an efficient and simple access to the crystalline di-tert-butyl(hydroxymethyl)phosphonate was developed. O-Mesylation gave high yields of the active phosphonomethylation reagent. For the synthesis of tenofovir, a two-step sequence was developed using Mg(OtBu)2 as the base for the alkylation of (R)-9-(2-hydroxypropyl)adenine. Subsequent deprotection could be achieved with aqueous acids. (Di-tert-butoxyphosphoryl)methyl methanesulfonate showed to be the most efficient electrophile tested, affording PMPA in 72% yield on a 5 g scale. The developed protocol could also be applied for the preparation of the hepatitis B drug adefovir (64% yield/1 g scale).

20.
Org Process Res Dev ; 25(12): 2679-2685, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34955627

ABSTRACT

A scalable four-step synthesis of molnupiravir from cytidine is described herein. The attractiveness of this approach is its fully chemical nature involving inexpensive reagents and more environmentally friendly solvents such as water, isopropanol, acetonitrile, and acetone. Isolation and purification procedures are improved in comparison to our earlier study as all intermediates can be isolated via recrystallization. The key steps in the synthesis, namely, ester formation, hydroxyamination, and deprotection were carried out on a multigram scale to afford molnupiravir in 36-41% yield with an average purity of 98 wt % by qNMR and 99 area% by HPLC.

SELECTION OF CITATIONS
SEARCH DETAIL