Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Malar J ; 18(1): 402, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31801556

ABSTRACT

BACKGROUND: Serological data indicating the presence and level of antibodies against infectious disease antigens provides indicators of exposure and transmission patterns in a population. Laboratory testing for large-scale serosurveys is often hindered by time-consuming immunoassays that employ multiple tandem steps. Some nations have recently begun using malaria serosurveillance data to make inferences about the malaria exposure in their populations, and serosurveys have grown increasingly larger as more accurate estimates are desired. Presented here is a novel approach of antibody detection using bead-based immunoassay that involves incubating all assay reagents concurrently overnight. RESULTS: A serosurvey in was performed in Haiti in early 2017 with both sera (n = 712) and dried blood spots (DBS, n = 796) collected for the same participants. The Luminex® multiplex bead-based assay (MBA) was used to detect total IgG against 8 malaria antigens: PfMSP1, PvMSP1, PmMSP1, PfCSP, PfAMA1, PfLSA1, PfGLURP-R0, PfHRP2. All sera and DBS samples were assayed by MBA using a standard immunoassay protocol with multiple steps, as well a protocol where sample and all reagents were incubated together overnight-termed here the OneStep assay. When compared to a standard multi-step assay, this OneStep assay amplified the assay signal for IgG detection for all 8 malaria antigens. The greatest increases in assay signal were seen at the low- and mid-range IgG titers and were indicative of an enhancement in the analyte detection, not simply an increase in the background signal of the assay. Seroprevalence estimates were generally similar for this sample Haitian population for all antigens regardless of serum or DBS sample type or assay protocol used. CONCLUSIONS: When using the MBA for IgG detection, overnight incubation for the test sample and all assay reagents greatly minimized hands-on time for laboratory staff. Enhanced IgG signal was observed with the OneStep assay for all 8 malaria antigens employed in this study, and seroprevalence estimates for this sample population were similar regardless of assay protocol used. This overnight incubation protocol has the potential to be deployed for large-scale malaria serosurveys for the high-throughput and timely collection of antibody data, particularly for malaria seroprevalence estimates.


Subject(s)
Immunoassay/methods , Malaria/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Dried Blood Spot Testing , Female , Haiti/epidemiology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , Young Adult
2.
Malar J ; 18(1): 246, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31331340

ABSTRACT

BACKGROUND: Measures of malaria burden using microscopy and rapid diagnostic tests (RDTs) in cross-sectional household surveys may incompletely describe the burden of malaria in low-transmission settings. This study describes the pattern of malaria transmission in Ethiopia using serological antibody estimates derived from a nationwide household survey completed in 2015. METHODS: Dried blood spot (DBS) samples were collected during the Ethiopian Malaria Indicator Survey in 2015 from malarious areas across Ethiopia. Samples were analysed using bead-based multiplex assays for IgG antibodies for six Plasmodium antigens: four human malaria species-specific merozoite surface protein-1 19kD antigens (MSP-1) and Apical Membrane Antigen-1 (AMA-1) for Plasmodium falciparum and Plasmodium vivax. Seroprevalence was estimated by age, elevation and region. The seroconversion rate was estimated using a reversible catalytic model fitted with maximum likelihood methods. RESULTS: Of the 10,278 DBS samples available, 93.6% (9622/10,278) had valid serological results. The mean age of participants was 15.8 years and 53.3% were female. National seroprevalence for antibodies to P. falciparum was 32.1% (95% confidence interval (CI) 29.8-34.4) and 25.0% (95% CI 22.7-27.3) to P. vivax. Estimated seroprevalences for Plasmodium malariae and Plasmodium ovale were 8.6% (95% CI 7.6-9.7) and 3.1% (95% CI 2.5-3.8), respectively. For P. falciparum seroprevalence estimates were significantly higher at lower elevations (< 2000 m) compared to higher (2000-2500 m) (aOR 4.4; p < 0.01). Among regions, P. falciparum seroprevalence ranged from 11.0% (95% CI 8.8-13.7) in Somali to 65.0% (95% CI 58.0-71.4) in Gambela Region and for P. vivax from 4.0% (95% CI 2.6-6.2) in Somali to 36.7% (95% CI 30.0-44.1) in Amhara Region. Models fitted to measure seroconversion rates showed variation nationally and by elevation, region, antigen type, and within species. CONCLUSION: Using multiplex serology assays, this study explored the cumulative malaria burden and regional dynamics of the four human malarias in Ethiopia. High malaria burden was observed in the northwest compared to the east. High transmission in the Gambela and Benishangul-Gumuz Regions and the neglected presence of P. malariae and P. ovale may require programmatic attention. The use of a multiplex assay for antibody detection in low transmission settings has the potential to act as a more sensitive biomarker.


Subject(s)
Malaria/epidemiology , Plasmodium/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Protozoan , Child , Child, Preschool , Ethiopia/epidemiology , Female , Humans , Immunoglobulin G/analysis , Infant , Infant, Newborn , Malaria/classification , Male , Middle Aged , Plasmodium/classification , Prevalence , Seroepidemiologic Studies , Serologic Tests , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL