Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Mol Life Sci ; 80(2): 55, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36729338

ABSTRACT

Chemokine ligands and receptors regulate the directional migration of leukocytes. Post-translational modifications of chemokine receptors including O-glycosylation and tyrosine sulfation have been reported to regulate ligand binding and resulting signaling. Through in silico analyses, we determined potential conserved O-glycosylation and sulfation sites on human and murine CC chemokine receptors. Glyco-engineered CHO cell lines were used to measure the impact of O-glycosylation on CC chemokine receptor CCR5, while mutation of tyrosine residues and treatment with sodium chlorate were performed to determine the effect of tyrosine sulfation. Changing the glycosylation or tyrosine sulfation on CCR5 reduced the receptor signaling by the more positively charged CCL5 and CCL8 more profoundly compared to the less charged CCL3. The loss of negatively charged sialic acids resulted only in a minor effect on CCL3-induced signal transduction. The enzymes GalNAc-T1 and GalNAc-T11 were shown to be involved in the process of chemokine receptor O-glycosylation. These results indicate that O-glycosylation and tyrosine sulfation are involved in the fine-tuning and recognition of chemokine interactions with CCR5 and the resulting signaling.


Subject(s)
Chemokines , Signal Transduction , Cricetinae , Animals , Humans , Mice , Chemokines/metabolism , Protein Processing, Post-Translational , Receptors, CCR5/genetics , CHO Cells , Tyrosine/metabolism , Protein Binding
2.
PLoS Biol ; 18(4): e3000656, 2020 04.
Article in English | MEDLINE | ID: mdl-32271748

ABSTRACT

Chemokines and their receptors are orchestrators of cell migration in humans. Because dysregulation of the receptor-chemokine system leads to inflammation and cancer, both chemokines and receptors are highly sought therapeutic targets. Yet one of the barriers for their therapeutic targeting is the limited understanding of the structural principles behind receptor-chemokine recognition and selectivity. The existing structures do not include CXC subfamily complexes and lack information about the receptor distal N-termini, despite the importance of the latter in signaling, regulation, and bias. Here, we report the discovery of the geometry of the complex between full-length CXCR4, a prototypical CXC receptor and driver of cancer metastasis, and its endogenous ligand CXCL12. By comprehensive disulfide cross-linking, we establish the existence and the structure of a novel interface between the CXCR4 distal N-terminus and CXCL12 ß1-strand, while also recapitulating earlier findings from nuclear magnetic resonance, modeling and crystallography of homologous receptors. A cross-linking-informed high-resolution model of the CXCR4-CXCL12 complex pinpoints the interaction determinants and reveals the occupancy of the receptor major subpocket by the CXCL12 proximal N terminus. This newly found positioning of the chemokine proximal N-terminus provides a structural explanation of CXC receptor-chemokine selectivity against other subfamilies. Our findings challenge the traditional two-site understanding of receptor-chemokine recognition, suggest the possibility of new affinity and signaling determinants, and fill a critical void on the structural map of an important class of therapeutic targets. These results will aid the rational design of selective chemokine-receptor targeting small molecules and biologics with novel pharmacology.


Subject(s)
Chemokine CXCL12/chemistry , Chemokine CXCL12/metabolism , Receptors, CXCR4/chemistry , Receptors, CXCR4/metabolism , Animals , Binding Sites , Blotting, Western , Chemokine CXCL12/genetics , Cysteine/chemistry , Cysteine/genetics , Disulfides/chemistry , Flow Cytometry , HEK293 Cells , Humans , Insecta/cytology , Models, Molecular , Mutation , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, CXCR4/genetics , beta-Arrestins/metabolism
3.
Extremophiles ; 28(1): 6, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38036917

ABSTRACT

This study investigated the metabolism of Geobacillus sp. LC300, a promising biorefinery host organism with high substrate utilization rates. A new defined medium was designed and tested that allows for exponential growth to elevated cell densities suitable for quantitative physiological studies. Screening of the metabolic requirements of G. sp. LC300 revealed prototrophy for all essential amino acids and most vitamins and only showed auxotrophy for vitamin B12 and biotin. The effect of temperature and pH on growth rate was investigated, adjusting the optimal growth temperature to several degrees lower than previously reported. Lastly, studies on carbon source utilization revealed a capability for fast growth on several common carbon sources, including monosaccharides, oligosaccharides, and polysaccharides, and the highest ever reported growth rate in defined medium on glucose (2.20 h-1) or glycerol (1.95 h-1). These findings provide a foundation for further exploration of G. sp. LC300's physiology and metabolic regulation, and its potential use in bioproduction processes.


Subject(s)
Geobacillus , Geobacillus/metabolism , Carbon/metabolism , Temperature , Glucose/metabolism
4.
Nature ; 540(7633): 458-461, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27926736

ABSTRACT

CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer. These disease associations have motivated numerous preclinical studies and clinical trials (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2-chemokine axis. To aid drug discovery efforts, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein-protein interactions, receptor-chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.


Subject(s)
Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/chemistry , Allosteric Site/drug effects , Binding Sites , Chemokines, CC/metabolism , Crystallography, X-Ray , Drug Design , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Ligands , Models, Molecular
5.
Appl Microbiol Biotechnol ; 103(9): 3693-3704, 2019 May.
Article in English | MEDLINE | ID: mdl-30834961

ABSTRACT

Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L-1 in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Acyl Coenzyme A/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Palmitoyl-CoA Hydrolase/metabolism , Thiolester Hydrolases/genetics , 3-Hydroxybutyric Acid/analysis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Batch Cell Culture Techniques , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Halomonas/enzymology , Metabolic Engineering , Palmitoyl-CoA Hydrolase/genetics , Thiolester Hydrolases/metabolism
6.
Appl Microbiol Biotechnol ; 103(14): 5627-5639, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31104101

ABSTRACT

Accumulation of acetate is a limiting factor in recombinant production of (R)-3-hydroxybutyrate (3HB) by Escherichia coli in high-cell-density processes. To alleviate this limitation, this study investigated two approaches: (i) deletion of phosphotransacetylase (pta), pyruvate oxidase (poxB), and/or the isocitrate lyase regulator (iclR), known to decrease acetate formation, on bioreactor cultivations designed to achieve high 3HB concentrations. (ii) Screening of different E. coli strain backgrounds (B, BL21, W, BW25113, MG1655, W3110, and AF1000) for their potential as low acetate-forming, 3HB-producing platforms. Deletion of pta and pta-poxB in the AF1000 strain background was to some extent successful in decreasing acetate formation, but also dramatically increased excretion of pyruvate and did not result in increased 3HB production in high-cell-density fed-batch cultivations. Screening of the different E. coli strains confirmed BL21 as a low acetate-forming background. Despite low 3HB titers in low-cell-density screening, 3HB-producing BL21 produced five times less acetic acid per mole of 3HB, which translated into a 2.3-fold increase in the final 3HB titer and a 3-fold higher volumetric 3HB productivity over 3HB-producing AF1000 strains in nitrogen-limited fed-batch cultivations. Consequently, the BL21 strain achieved the hitherto highest described volumetric productivity of 3HB (1.52 g L-1 h-1) and the highest 3HB concentration (16.3 g L-1) achieved by recombinant E. coli. Screening solely for 3HB titers in low-cell-density batch cultivations would not have identified the potential of this strain, reaffirming the importance of screening with the final production conditions in mind.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Batch Cell Culture Techniques , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering , Bioreactors , Escherichia coli Proteins/genetics , Gene Deletion , Pyruvic Acid
7.
Microb Cell Fact ; 15: 91, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27245326

ABSTRACT

BACKGROUND: In a recently discovered microorganism, Halomonas boliviensis, polyhydroxybutyrate production was extensive and in contrast to other PHB producers, contained a set of alleles for the enzymes of this pathway. Also the monomer, (R)-3-hydroxybutyrate (3HB), possesses features that are interesting for commercial production, in particular the synthesis of fine chemicals with chiral specificity. Production with a halophilic organism is however not without serious drawbacks, wherefore it was desirable to introduce the 3HB pathway into Escherichia coli. RESULTS: The production of 3HB is a two-step process where the acetoacetyl-CoA reductase was shown to accept both NADH and NADPH, but where the V max for the latter was eight times higher. It was hypothesized that NADPH could be limiting production due to less abundance than NADH, and two strategies were employed to increase the availability; (1) glutamate was chosen as nitrogen source to minimize the NADPH consumption associated with ammonium salts and (2) glucose-6-phosphate dehydrogenase was overexpressed to improve NADPH production from the pentose phosphate pathway. Supplementation of glutamate during batch cultivation gave the highest specific productivity (q3HB = 0.12 g g(-1) h(-1)), while nitrogen depletion/zwf overexpression gave the highest yield (Y3HB/CDW = 0.53 g g(-1)) and a 3HB concentration of 1 g L(-1), which was 50% higher than the reference. A nitrogen-limited fedbatch process gave a concentration of 12.7 g L(-1) and a productivity of 0.42 g L(-1) h(-1), which is comparable to maximum values found in recombinant E. coli. CONCLUSIONS: Increased NADPH supply is a valuable tool to increase recombinant 3HB production in E. coli, and the inherent hydrolysis of CoA leads to a natural export of the product to the medium. Acetic acid production is still the dominating by-product and this needs attention in the future to increase the volumetric productivity further.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Escherichia coli/metabolism , NAD/metabolism , 3-Hydroxybutyric Acid/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/growth & development , Glutamic Acid/metabolism , Halomonas/classification , Halomonas/enzymology , Halomonas/genetics , Nitrogen/metabolism , Phylogeny , Plasmids/genetics , Plasmids/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Stereoisomerism
8.
Proc Natl Acad Sci U S A ; 110(43): 17338-43, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24101520

ABSTRACT

The membrane protein complex between the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and phospholamban (PLN) controls Ca(2+) transport in cardiomyocytes, thereby modulating cardiac contractility. ß-Adrenergic-stimulated phosphorylation of PLN at Ser-16 enhances SERCA activity via an unknown mechanism. Using solid-state nuclear magnetic resonance spectroscopy, we mapped the physical interactions between SERCA and both unphosphorylated and phosphorylated PLN in membrane bilayers. We found that the allosteric regulation of SERCA depends on the conformational equilibrium of PLN, whose cytoplasmic regulatory domain interconverts between three different states: a ground T state (helical and membrane associated), an excited R state (unfolded and membrane detached), and a B state (extended and enzyme-bound), which is noninhibitory. Phosphorylation at Ser-16 of PLN shifts the populations toward the B state, increasing SERCA activity. We conclude that PLN's conformational equilibrium is central to maintain SERCA's apparent Ca(2+) affinity within a physiological window. This model represents a paradigm shift in our understanding of SERCA regulation by posttranslational phosphorylation and suggests strategies for designing innovative therapeutic approaches to enhance cardiac muscle contractility.


Subject(s)
Calcium-Binding Proteins/chemistry , Protein Conformation , Protein Interaction Mapping/methods , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Allosteric Regulation , Amino Acid Sequence , Animals , Calcium/chemistry , Calcium/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Kinetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Magnetic Resonance Spectroscopy , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mutation , Phosphorylation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
9.
Microb Cell Fact ; 14: 47, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25889453

ABSTRACT

BACKGROUND: Salmonella enterica serovar Enteritidis (SE) is one of the most potent pathogenic Salmonella serotypes causing food-borne diseases in humans. We have previously reported the use of the ß-autotransporter AIDA-I to express the Salmonella flagellar protein H:gm and the SE serotype-specific fimbrial protein SefA at the surface of E. coli as live bacterial vaccine vehicles. While SefA was successfully displayed at the cell surface, virtually no full-length H:gm was exposed to the medium due to extensive proteolytic cleavage of the N-terminal region. In the present study, we addressed this issue by expressing a truncated H:gm variant (H:gmd) covering only the serotype-specific central region. This protein was also expressed in fusion to SefA (H:gmdSefA) to understand if the excellent translocation properties of SefA could be used to enhance the secretion and immunogenicity. RESULTS: H:gmd and H:gmdSefA were both successfully translocated to the E. coli outer membrane as full-length proteins using the AIDA-I system. Whole-cell flow cytometric analysis confirmed that both antigens were displayed and accessible from the extracellular environment. In contrast to H:gm, the H:gmd protein was not only expressed as full-length protein, but it also seemed to promote the display of the protein fusion H:gmdSefA. Moreover, the epitopes appeared to be recognized by HT-29 intestinal cells, as measured by induction of the pro-inflammatory interleukin 8. CONCLUSIONS: We believe this study to be an important step towards a live bacterial vaccine against Salmonella due to the central role of the flagellar antigen H:gm and SefA in Salmonella infections and the corresponding immune responses against Salmonella.


Subject(s)
Bacterial Vaccines/immunology , Cell Membrane/metabolism , Escherichia coli/metabolism , Salmonella enteritidis/metabolism , Humans
10.
Appl Environ Microbiol ; 80(7): 2293-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24487538

ABSTRACT

Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity.


Subject(s)
Escherichia coli/enzymology , Membrane Proteins/metabolism , Transaminases/metabolism , Arthrobacter/enzymology , Arthrobacter/genetics , Cell Surface Display Techniques , Escherichia coli/genetics , Membrane Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transaminases/genetics
11.
Bioprocess Biosyst Eng ; 37(8): 1685-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24525833

ABSTRACT

The autotransporter family of Gram-negative protein exporters has been exploited for surface expression of recombinant passenger proteins. While the passenger in some cases was successfully translocated, a major problem has been low levels of full-length protein on the surface due to proteolysis following export over the cytoplasmic membrane. The aim of the present study was to increase the surface expression yield of the model protein SefA, a Salmonella enterica fimbrial subunit with potential for use in vaccine applications, by reducing this proteolysis through process design using Design of Experiments methodology. Cultivation temperature and pH, hypothesized to influence periplasmic protease activity, as well as inducer concentration were the parameters selected for optimization. Through modification of these parameters, the total surface expression yield of SefA was increased by 200 %. At the same time, the yield of full-length protein was increased by 300 %, indicating a 33 % reduction in proteolysis.


Subject(s)
Escherichia coli K12/growth & development , Fimbriae Proteins/biosynthesis , Gene Expression , Salmonella enterica/genetics , Escherichia coli K12/genetics , Fimbriae Proteins/genetics , Hydrogen-Ion Concentration , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
12.
Structure ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38776922

ABSTRACT

Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.

13.
Biochemistry ; 52(38): 6684-94, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-23968132

ABSTRACT

Phospholamban is an integral membrane protein that controls the calcium balance in cardiac muscle cells. As the function and regulation of this protein require the active involvement of low populated states in equilibrium with the native state, it is of great interest to acquire structural information about them. In this work, we calculate the conformations and populations of the ground state and the three main excited states of phospholamban by incorporating nuclear magnetic resonance residual dipolar couplings as replica-averaged structural restraints in molecular dynamics simulations. We then provide a description of the manner in which phosphorylation at Ser16 modulates the activity of the protein by increasing the sizes of the populations of its excited states. These results demonstrate that the approach that we describe provides a detailed characterization of the different states of phospholamban that determine the function and regulation of this membrane protein. We anticipate that the knowledge of conformational ensembles enable the design of new dominant negative mutants of phospholamban by modulating the relative populations of its conformational substates.


Subject(s)
Calcium-Binding Proteins/chemistry , Amino Acid Sequence , Calcium-Binding Proteins/genetics , Humans , Models, Molecular , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular/methods , Phosphorylation , Protein Conformation , Serine/metabolism
14.
Biochim Biophys Acta ; 1818(2): 146-53, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21839724

ABSTRACT

In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments. Previously, we proposed that the conformational equilibria of PLN are central to SERCA regulation. Here, we show that these equilibria detected in micelles and bicelles are also present in native sarcoplasmic reticulum lipid membranes as probed by MAS solid-state NMR. Importantly, we found that the kinetics of conformational exchange and the extent of ground and excited states in detergent micelles and lipid bilayers are different, revealing a possible role of the membrane composition on the allosteric regulation of SERCA. Since the extent of excited states is directly correlated to SERCA inhibition, these findings open up the exciting possibility that calcium transport in the heart can be controlled by the lipid bilayer composition. This article is part of a Special Issue entitled: Membrane protein structure and function.


Subject(s)
Calcium-Binding Proteins/chemistry , Cell Membrane/chemistry , Membrane Lipids/chemistry , Animals , Calcium-Binding Proteins/metabolism , Cell Membrane/metabolism , Kinetics , Magnetic Resonance Spectroscopy/methods , Membrane Lipids/metabolism , Protein Conformation , Protein Structure, Tertiary , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
15.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961571

ABSTRACT

Canonical chemokine receptor CXCR4 and atypical receptor ACKR3 both respond to CXCL12 but induce different intracellular effector responses to regulate cell migration: CXCR4 couples to G proteins and arrestins, while ACKR3 is arrestin-biased. CXCR4 also signals only in response to CXCL12, whereas ACKR3 recruits ß-arrestin in response to CXCL12, CXCL12 variants, and other peptides and proteins. To investigate the role of conformational dynamics in the distinct pharmacological behaviors of CXCR4 and ACKR3, we utilized single-molecule FRET. The data revealed that apo CXCR4 preferentially populates a high-FRET inactive state while apo ACKR3 shows little conformational preference, consistent with its promiscuous ligand recognition and propensity for activation. Markedly different conformational landscapes of the receptors in response to ligands suggest that activation of ACKR3 may be achieved by a broader distribution of conformational states than CXCR4. The dynamic properties of ACKR3 may also underly its inability to couple to G proteins, making it arrestin-biased.

16.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37502840

ABSTRACT

Atypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.

17.
J Muscle Res Cell Motil ; 33(6): 485-92, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22971924

ABSTRACT

Phospholamban (PLN) is the endogenous inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), the integral membrane enzyme responsible for 70 % of the removal of Ca(2+) from the cytosol, inducing cardiac muscle relaxation in humans. Dysfunctions in SERCA:PLN interactions have been implicated as having a critical role in cardiac disease, and targeting Ca(2+) transport has been demonstrated to be a promising avenue in treating conditions of heart failure. Here, we designed a series of new mutants able to tune SERCA function, targeting the loop sequence that connects the transmembrane and cytoplasmic helices of PLN. We found that a variable degree of loss of inhibition mutants is attainable by engineering glycine mutations along PLN's loop domain. Remarkably, a double glycine mutation results in a complete loss-of-function mutant, fully mimicking the phosphorylated state of PLN. Using nuclear magnetic resonance spectroscopy, we rationalized the effects of these mutations in terms of entropic control on PLN function, whose inhibitory function can be modulated by increasing its conformational dynamics. However, if PLN mutations go past a threshold set by the phosphorylated state, they break the structural coupling between the transmembrane and cytoplasmic domains, resulting in a species that behaves as the inhibitory transmembrane domain alone. These studies provide new potential candidates for gene therapy to reverse the effects of heart failure.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cytoplasm/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Amino Acid Sequence , Glycine/genetics , Glycine/metabolism , Humans , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors
18.
Microb Cell Fact ; 11: 118, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22943700

ABSTRACT

BACKGROUND: The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. RESULTS: The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. CONCLUSIONS: Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis.


Subject(s)
Escherichia coli/metabolism , Membrane Proteins/metabolism , Antibodies/immunology , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fluorescent Dyes/chemistry , Histidine/genetics , Histidine/metabolism , Membrane Proteins/genetics , Oligopeptides/genetics , Oligopeptides/metabolism , Plasmids/genetics , Plasmids/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Salmonella/metabolism
19.
Metab Eng Commun ; 15: e00212, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36425956

ABSTRACT

Thermophilic microorganisms show high potential for use as biorefinery cell factories. Their high growth temperatures provide fast conversion rates, lower risk of contaminations, and facilitated purification of volatile products. To date, only a few thermophilic species have been utilized for microbial production purposes, and the development of production strains is impeded by the lack of metabolic engineering tools. In this study, we constructed a genome-scale metabolic model, an important part of the metabolic engineering pipeline, of the fast-growing thermophile Geobacillus sp. LC300. The model (iGEL604) contains 604 genes, 1249 reactions and 1311 metabolites, and the reaction reversibility is based on thermodynamics at the optimum growth temperature. The growth phenotype is analyzed by batch cultivations on two carbon sources, further closing balances in carbon and degree-of-reduction. The predictive ability of the model is benchmarked against experimentally determined growth characteristics and internal flux distributions, showing high similarity to experimental phenotypes.

20.
Cells ; 11(8)2022 04 13.
Article in English | MEDLINE | ID: mdl-35455996

ABSTRACT

Chemokine receptors are extensively involved in a broad range of physiological and pathological processes, making them attractive drug targets. However, despite considerable efforts, there are very few approved drugs targeting this class of seven transmembrane domain receptors to date. In recent years, the importance of including binding kinetics in drug discovery campaigns was emphasized. Therefore, kinetic insight into chemokine-chemokine receptor interactions could help to address this issue. Moreover, it could additionally deepen our understanding of the selectivity and promiscuity of the chemokine-chemokine receptor network. Here, we describe the application, optimization and validation of a homogenous Scintillation Proximity Assay (SPA) for real-time kinetic profiling of chemokine-chemokine receptor interactions on the example of ACKR3 and CXCL12. The principle of the SPA is the detection of radioligand binding to receptors reconstituted into nanodiscs by scintillation light. No receptor modifications are required. The nanodiscs provide a native-like environment for receptors and allow for full control over bilayer composition and size. The continuous assay format enables the monitoring of binding reactions in real-time, and directly accounts for non-specific binding and potential artefacts. Minor adaptations additionally facilitate the determination of equilibrium binding metrics, making the assay a versatile tool for the study of receptor-ligand interactions.


Subject(s)
Kinetics , Ligands , Protein Binding , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL