Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Development ; 148(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34927678

ABSTRACT

Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.


Subject(s)
Embryonic Development/genetics , Lung/growth & development , Mesenchymal Stem Cells/cytology , Organogenesis/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Embryo, Mammalian/ultrastructure , Epithelial Cells/cytology , Epithelial Cells/ultrastructure , Gene Expression Regulation, Developmental/genetics , Lung/ultrastructure , Mesenchymal Stem Cells/ultrastructure , Mice , RNA-Seq , Single-Cell Analysis , Transcriptome/genetics
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33990468

ABSTRACT

Lamellar bodies (LBs) are lysosome-related organelles (LROs) of surfactant-producing alveolar type 2 (AT2) cells of the distal lung epithelium. Trafficking pathways to LBs have been understudied but are likely critical to AT2 cell homeostasis given associations between genetic defects of endosome to LRO trafficking and pulmonary fibrosis in Hermansky Pudlak syndrome (HPS). Our prior studies uncovered a role for AP-3, defective in HPS type 2, in trafficking Peroxiredoxin-6 to LBs. We now show that the P4-type ATPase ATP8A1 is sorted by AP-3 from early endosomes to LBs through recognition of a C-terminal dileucine-based signal. Disruption of the AP-3/ATP8A1 interaction causes ATP8A1 accumulation in early sorting and/or recycling endosomes, enhancing phosphatidylserine exposure on the cytosolic leaflet. This in turn promotes activation of Yes-activating protein, a transcriptional coactivator, augmenting cell migration and AT2 cell numbers. Together, these studies illuminate a mechanism whereby loss of AP-3-mediated trafficking contributes to a toxic gain-of-function that results in enhanced and sustained activation of a repair pathway associated with pulmonary fibrosis.


Subject(s)
Adaptor Protein Complex 3/genetics , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Alveolar Epithelial Cells/metabolism , Hermanski-Pudlak Syndrome/genetics , Phospholipid Transfer Proteins/genetics , Pulmonary Fibrosis/genetics , Transcription Factors/genetics , Adaptor Protein Complex 3/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphatases/metabolism , Alveolar Epithelial Cells/cytology , Animals , Biological Transport , Cell Line , Cell Movement , Disease Models, Animal , Endosomes/metabolism , Female , Gene Expression Regulation , Hermanski-Pudlak Syndrome/metabolism , Hermanski-Pudlak Syndrome/pathology , Humans , Lung/metabolism , Lung/pathology , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Peroxiredoxin VI/genetics , Peroxiredoxin VI/metabolism , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/metabolism , Primary Cell Culture , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Signal Transduction , Transcription Factors/metabolism , YAP-Signaling Proteins , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
Immunity ; 36(5): 782-94, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22560444

ABSTRACT

Effective major histocompatibility complex-II (MHC-II) antigen presentation from phagocytosed particles requires phagosome-intrinsic Toll-like receptor (TLR) signaling, but the molecular mechanisms underlying TLR delivery to phagosomes and how signaling regulates antigen presentation are incompletely understood. We show a requirement in dendritic cells (DCs) for adaptor protein-3 (AP-3) in efficient TLR recruitment to phagosomes and MHC-II presentation of antigens internalized by phagocytosis but not receptor-mediated endocytosis. DCs from AP-3-deficient pearl mice elicited impaired CD4(+) T cell activation and Th1 effector cell function to particulate antigen in vitro and to recombinant Listeria monocytogenes infection in vivo. Whereas phagolysosome maturation and peptide:MHC-II complex assembly proceeded normally in pearl DCs, peptide:MHC-II export to the cell surface was impeded. This correlated with reduced TLR4 recruitment and proinflammatory signaling from phagosomes by particulate TLR ligands. We propose that AP-3-dependent TLR delivery from endosomes to phagosomes and subsequent signaling mobilize peptide:MHC-II export from intracellular stores.


Subject(s)
Adaptor Protein Complex 3/immunology , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Phagosomes/immunology , Toll-Like Receptors/immunology , Adaptor Protein Complex 3/metabolism , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Cell Membrane/immunology , Cell Membrane/metabolism , Cells, Cultured , Dendritic Cells/metabolism , Endocytosis/immunology , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Ligands , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Ovalbumin/immunology , Ovalbumin/metabolism , Peptides/immunology , Peptides/metabolism , Phagocytosis/immunology , Phagosomes/metabolism , Signal Transduction/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Toll-Like Receptors/metabolism
4.
Am J Respir Crit Care Med ; 201(10): 1249-1262, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32023086

ABSTRACT

Rationale: Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis.Objectives: To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/ß-catenin signaling after hyperoxia injury.Methods: Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine in vivo hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA in situ hybridization, quantitative confocal microscopy, and lung morphometry.Measurements and Main Results: Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of WNT5A. Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced Wnt5a expression in the PCLS hyperoxia model and in vivo mouse hyperoxia model, with improved alveolarization in the PCLS model.Conclusions: Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.


Subject(s)
Alveolar Epithelial Cells/metabolism , Fibroblasts/metabolism , Hyperoxia/genetics , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Wnt-5a Protein/genetics , Animals , Bronchopulmonary Dysplasia , Coculture Techniques , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Hyperoxia/metabolism , In Situ Hybridization , Lung/growth & development , Mesenchymal Stem Cells/drug effects , Mice , Microscopy, Confocal , NF-kappa B/antagonists & inhibitors , Nitriles/pharmacology , Organ Culture Techniques , Real-Time Polymerase Chain Reaction , Sulfones/pharmacology , Wnt-5a Protein/drug effects , Wnt-5a Protein/metabolism
5.
Am J Pathol ; 188(4): 853-862, 2018 04.
Article in English | MEDLINE | ID: mdl-29355514

ABSTRACT

Wnt/ß-catenin signaling is necessary for normal lung development, and abnormal Wnt signaling contributes to the pathogenesis of both bronchopulmonary dysplasia (BPD) and idiopathic pulmonary fibrosis (IPF), fibrotic lung diseases that occur during infancy and aging, respectively. Using a library of human normal and diseased human lung samples, we identified a distinct signature of nuclear accumulation of ß-catenin phosphorylated at tyrosine 489 and epithelial cell cytosolic localization of ß-catenin phosphorylated at tyrosine 654 in early normal lung development and fibrotic lung diseases BPD and IPF. Furthermore, this signature was recapitulated in murine models of BPD and IPF. Image analysis of immunofluorescence colocalization demonstrated a consistent pattern of elevated nuclear phosphorylated ß-catenin in the lung epithelium and surrounding mesenchyme in BPD and IPF, closely resembling the pattern observed in 18-week fetal lung. Nuclear ß-catenin phosphorylated at tyrosine 489 associated with an increased expression of Wnt target gene AXIN2, suggesting that the observed ß-catenin signature is of functional significance during normal development and injury repair. The association of specific modifications of ß-catenin during normal lung development and again in response to lung injury supports the widely held concept that repair of lung injury involves the recapitulation of developmental programs. Furthermore, these observations suggest that ß-catenin phosphorylation has potential as a therapeutic target for the treatment and prevention of both BPD and IPF.


Subject(s)
Bronchopulmonary Dysplasia/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , beta Catenin/metabolism , A549 Cells , Adult , Animals , Animals, Newborn , Axin Protein/metabolism , Bronchopulmonary Dysplasia/pathology , Cell Nucleus/metabolism , Epithelial Cells/metabolism , Female , Fetus/metabolism , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Phosphorylation , Pregnancy , Pregnancy Trimester, Second , Protein Processing, Post-Translational , Signal Transduction , Tyrosine/metabolism
6.
Am J Respir Cell Mol Biol ; 58(5): 566-574, 2018 05.
Article in English | MEDLINE | ID: mdl-29190429

ABSTRACT

Defining the mechanisms of cellular pathogenesis in rare lung diseases such as Hermansky-Pudlak syndrome (HPS) is often complicated by loss of the differentiated phenotype of cultured primary alveolar type 2 (AT2) cells, as well as by a lack of durable cell lines that are faithful to both AT2-cell and rare disease phenotypes. We used CRISPR/Cas9 gene editing to generate a series of HPS-specific mutations in the MLE-15 cell line. The resulting MLE-15/HPS cell lines exhibit preservation of AT2 cellular functions, including formation of lamellar body-like organelles, complete processing of surfactant protein B, and known features of HPS specific to each trafficking complex, including loss of protein targeting to lamellar bodies. MLE-15/HPS1 and MLE-15/HPS2 (with a mutation in Ap3ß1) express increased macrophage chemotactic protein-1, a well-described mediator of alveolitis in patients with HPS and in mouse models. We show that MLE-15/HPS9 and pallid AT2 cells (with a mutation in Bloc1s6) also express increased macrophage chemotactic protein-1, suggesting that mice and humans with BLOC-1 mutations may also be susceptible to alveolitis. In addition to providing a flexible platform to examine the role of HPS-specific mutations in trafficking AT2 cells, MLE-15/HPS cell lines provide a durable resource for high-throughput screening and studies of cellular pathophysiology that are likely to accelerate progress toward developing novel therapies for this rare lung disease.


Subject(s)
Alveolar Epithelial Cells/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , Hermanski-Pudlak Syndrome/genetics , Mutation , Alveolar Epithelial Cells/pathology , Animals , CRISPR-Associated Protein 9/metabolism , Cell Line , Disease Models, Animal , Genetic Markers , Genetic Predisposition to Disease , Hermanski-Pudlak Syndrome/metabolism , Hermanski-Pudlak Syndrome/pathology , Humans , Mice, Inbred C57BL , Mice, Transgenic , Phenotype
7.
Am J Respir Cell Mol Biol ; 59(2): 158-166, 2018 08.
Article in English | MEDLINE | ID: mdl-29625013

ABSTRACT

Alveolar type II (AT2) epithelial cells are uniquely specialized to produce surfactant in the lung and act as progenitor cells in the process of repair after lung injury. AT2 cell injury has been implicated in several lung diseases, including idiopathic pulmonary fibrosis and bronchopulmonary dysplasia. The inability to maintain primary AT2 cells in culture has been a significant barrier in the investigation of pulmonary biology. We have addressed this knowledge gap by developing a three-dimensional (3D) organotypic coculture using primary human fetal AT2 cells and pulmonary fibroblasts. Grown on top of matrix-embedded fibroblasts, the primary human AT2 cells establish a monolayer and have direct contact with the underlying pulmonary fibroblasts. Unlike conventional two-dimensional (2D) culture, the structural and functional phenotype of the AT2 cells in our 3D organotypic culture was preserved over 7 days of culture, as evidenced by the presence of lamellar bodies and by production of surfactant proteins B and C. Importantly, the AT2 cells in 3D cocultures maintained the ability to replicate, with approximately 60% of AT2 cells staining positive for the proliferation marker Ki67, whereas no such proliferation is evident in 2D cultures of the same primary AT2 cells. This organotypic culture system enables interrogation of AT2 epithelial biology by providing a reductionist in vitro model in which to investigate the response of AT2 epithelial cells and AT2 cell-fibroblast interactions during lung injury and repair.


Subject(s)
Cell Communication/physiology , Epithelial Cells/metabolism , Lung Injury/pathology , Lung/pathology , Cells, Cultured , Coculture Techniques , Fibroblasts/metabolism , Humans , Phenotype
8.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L186-L195, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27941077

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a common complication of premature birth. The histopathology of BPD is characterized by an arrest of alveolarization with fibroblast activation. The Wnt/ß-catenin signaling pathway is important in early lung development. When Wnt signaling is active, phosphorylation of ß-catenin by tyrosine kinases at activating sites, specifically at tyrosine 489 (Y489), correlates with nuclear localization of ß-catenin. We examined fetal lung tissue, lung tissue from term newborns, and lung tissue from infants who died with BPD; we found nuclear ß-catenin phosphorylation at Y489 in epithelial and mesenchymal cells in fetal tissue and BPD tissue, but not in the lungs of term infants. Using a 3D human organoid model, we found increased nuclear localization of ß-catenin phosphorylated at Y489 (p-ß-cateninY489) after exposure to alternating hypoxia and hyperoxia compared with organoids cultured in normoxia. Exogenous stimulation of the canonical Wnt pathway in organoids was sufficient to cause nuclear localization of p-ß-cateninY489 in normoxia and mimicked the pattern of α-smooth muscle actin (α-SMA) expression seen with fibroblastic activation from oxidative stress. Treatment of organoids with a tyrosine kinase inhibitor prior to cyclic hypoxia-hyperoxia inhibited nuclear localization of p-ß-cateninY489 and prevented α-SMA expression by fibroblasts. Posttranslational phosphorylation of ß-catenin is a transient feature of normal lung development. Moreover, the persistence of p-ß-cateninY489 is a durable marker of fibroblast activation in BPD and may play an important role in BPD disease pathobiology.


Subject(s)
Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Protein Processing, Post-Translational , beta Catenin/metabolism , Actins/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Dasatinib/pharmacology , Fibroblasts/drug effects , Humans , Hyperoxia/complications , Hyperoxia/metabolism , Hyperoxia/pathology , Hypoxia/complications , Hypoxia/metabolism , Hypoxia/pathology , Infant, Newborn , Lung/drug effects , Lung/growth & development , Lung/metabolism , Lung/pathology , Organoids/drug effects , Organoids/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational/drug effects , Protein Transport/drug effects , Up-Regulation/drug effects , Wnt Signaling Pathway/drug effects
9.
Am J Physiol Lung Cell Mol Physiol ; 308(1): L33-47, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25344067

ABSTRACT

Mutation of threonine for isoleucine at codon 73 (I73T) in the human surfactant protein C (hSP-C) gene (SFTPC) accounts for a significant portion of SFTPC mutations associated with interstitial lung disease (ILD). Cell lines stably expressing tagged primary translation product of SP-C isoforms were generated to test the hypothesis that deposition of hSP-C(I73T) within the endosomal system promotes disruption of a key cellular quality control pathway, macroautophagy. By fluorescence microscopy, wild-type hSP-C (hSP-C(WT)) colocalized with exogenously expressed human ATP binding cassette class A3 (hABCA3), an indicator of normal trafficking to lysosomal-related organelles. In contrast, hSP-C(I73T) was dissociated from hABCA3 but colocalized to the plasma membrane as well as the endosomal network. Cells expressing hSP-C(I73T) exhibited increases in size and number of cytosolic green fluorescent protein/microtubule-associated protein 1 light-chain 3 (LC3) vesicles, some of which colabeled with red fluorescent protein from the gene dsRed/hSP-C(I73T). By transmission electron microscopy, hSP-C(I73T) cells contained abnormally large autophagic vacuoles containing organellar and proteinaceous debris, which phenocopied ultrastructural changes in alveolar type 2 cells in a lung biopsy from a SFTPC I73T patient. Biochemically, hSP-C(I73T) cells exhibited increased expression of Atg8/LC3, SQSTM1/p62, and Rab7, consistent with a distal block in autophagic vacuole maturation, confirmed by flux studies using bafilomycin A1 and rapamycin. Functionally, hSP-C(I73T) cells showed an impaired degradative capacity for an aggregation-prone huntingtin-1 reporter substrate. The disruption of autophagy-dependent proteostasis was accompanied by increases in mitochondria biomass and parkin expression coupled with a decrease in mitochondrial membrane potential. We conclude that hSP-C(I73T) induces an acquired block in macroautophagy-dependent proteostasis and mitophagy, which could contribute to the increased vulnerability of the lung epithelia to second-hit injury as seen in ILD.


Subject(s)
Autophagy , Genetic Diseases, Inborn/metabolism , Lung Diseases, Interstitial/metabolism , Mutation, Missense , Pulmonary Surfactant-Associated Protein C/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Adaptor Proteins, Signal Transducing/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Substitution , Autophagy-Related Protein 8 Family , Female , Gene Expression Regulation/genetics , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/pathology , HEK293 Cells , Humans , Infant , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/pathology , Lysosomes/genetics , Lysosomes/metabolism , Lysosomes/ultrastructure , Membrane Potential, Mitochondrial/genetics , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Microtubule-Associated Proteins/biosynthesis , Microtubule-Associated Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Pulmonary Surfactant-Associated Protein C/genetics , Sequestosome-1 Protein , Ubiquitin-Protein Ligases/biosynthesis , Ubiquitin-Protein Ligases/genetics , Vacuoles/genetics , Vacuoles/metabolism , Vacuoles/ultrastructure , rab GTP-Binding Proteins/biosynthesis , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
10.
Am J Physiol Lung Cell Mol Physiol ; 305(12): L970-80, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24142515

ABSTRACT

The lipid transport protein, ABCA3, expressed in alveolar type 2 (AT2) cells, is critical for surfactant homeostasis. The first luminal loop of ABCA3 contains three putative N-linked glycosylation sites at residues 53, 124, and 140. A common cotranslational modification, N-linked glycosylation, is critical for the proper expression of glycoproteins by enhancing folding, trafficking, and stability through augmentation of the endoplasmic reticulum (ER) folding cycle. To understand its role in ABCA3 biosynthesis, we utilized EGFP-tagged fusion constructs with either wild-type or mutant ABCA3 cDNAs that contained glutamine for asparagine substitutions at the putative glycosylation motifs. In A549 cells, inhibition of glycosylation by tunicamycin increased the electrophoretic mobility (Mr) and reduced the expression level of wild-type ABCA3 in a dose-dependent manner. Fluorescence imaging of transiently transfected A549 or primary human AT2 cells showed that although single motif mutants exhibited a vesicular distribution pattern similar to wild-type ABCA3, mutation of N124 and N140 residues resulted in a shift toward an ER-predominant distribution. By immunoblotting, the N53 mutation exhibited no effect on either the Mr or ABCA3 expression level. In contrast, substitutions at N124 or N140, as well a N124/N140 double mutation, resulted in increased electrophoretic mobility indicative of a glycosylation deficiency accompanied by reduced overall expression levels. Diminished steady-state levels of glycan-deficient ABCA3 isoforms were rescued by treatment with the proteasome inhibitor MG132. These results suggest that cotranslational N-linked glycosylation at N124 and N140 is critical for ABCA3 stability, and its disruption results in protein destabilization and proteasomal degradation.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Endoplasmic Reticulum/metabolism , Proteasome Endopeptidase Complex/metabolism , ATP-Binding Cassette Transporters/genetics , Cells, Cultured , Endoplasmic Reticulum/genetics , Glycosylation/drug effects , Humans , Mutation/genetics , Proteasome Endopeptidase Complex/genetics , Protein Transport/genetics , Tunicamycin/pharmacology
11.
Pediatr Res ; 74(6): 646-51, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24002332

ABSTRACT

BACKGROUND: Surfactant protein B (SP-B) is essential for normal lung function, and decreased concentrations of SP-B have a deleterious effect on pulmonary outcome. SP-B levels may correlate with variations in the encoding gene (SFTPB). SFTPB single-nucleotide polymorphism Ile131Thr affects proSP-B N-glycosylation in humans and the glycosylated Thr variant associates with pulmonary diseases. METHODS: We analyzed SP-B levels in amniotic fluid samples for associations with SFTPB polymorphisms and generated cell lines expressing either proSP-B/131Ile or proSP-B/131Thr for examining the effect of glycosylation on proSP-B secretion kinetics. To determine any transcription preference between Ile131Thr allelic variants, we used heterozygous human lungs for allelic expression imbalance assays. RESULTS: Protein levels correlated with Ile131Thr genotype and the lowest SP-B levels were observed in Thr/Thr homozygotes. Our results suggest that Ile131Thr variation-dependent N-glycosylation associates with decreased levels of SP-B, which is secreted from fetal lung to amniotic fluid. Glycosylated proSP-B/131Thr was secreted from transfected cells at a lower rate than nonglycosylated proSP-B/131Ile. Expression levels of the mRNA variants were equal. Secretion of the glycosylated variant was thus delayed in vitro by a posttranscriptional mechanism. CONCLUSION: These data support the hypothesis that proSP-B glycosylation due to Ile131Thr variation may have a causal role in genetic susceptibility to acute respiratory distress.


Subject(s)
Alleles , Pulmonary Surfactant-Associated Protein B/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Glycosylation , Humans , Isoleucine/metabolism , Polymorphism, Single Nucleotide , Pulmonary Surfactant-Associated Protein B/genetics , Threonine/metabolism
12.
JCI Insight ; 8(14)2023 07 24.
Article in English | MEDLINE | ID: mdl-37279065

ABSTRACT

During alveolar repair, alveolar type 2 (AT2) epithelial cell progenitors rapidly proliferate and differentiate into flat AT1 epithelial cells. Failure of normal alveolar repair mechanisms can lead to loss of alveolar structure (emphysema) or development of fibrosis, depending on the type and severity of injury. To test if ß1-containing integrins are required during repair following acute injury, we administered E. coli lipopolysaccharide (LPS) by intratracheal injection to mice with a postdevelopmental deletion of ß1 integrin in AT2 cells. While control mice recovered from LPS injury without structural abnormalities, ß1-deficient mice had more severe inflammation and developed emphysema. In addition, recovering alveoli were repopulated with an abundance of rounded epithelial cells coexpressing AT2 epithelial, AT1 epithelial, and mixed intermediate cell state markers, with few mature type 1 cells. AT2 cells deficient in ß1 showed persistently increased proliferation after injury, which was blocked by inhibiting NF-κB activation in these cells. Lineage tracing experiments revealed that ß1-deficient AT2 cells failed to differentiate into mature AT1 epithelial cells. Together, these findings demonstrate that functional alveolar repair after injury with terminal alveolar epithelial differentiation requires ß1-containing integrins.


Subject(s)
Emphysema , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/toxicity , Escherichia coli , Lung , Integrins
13.
Nat Med ; 8(5): 514-7, 2002 May.
Article in English | MEDLINE | ID: mdl-11984597

ABSTRACT

The only proven requirement for ascorbic acid (vitamin C) is in preventing scurvy, presumably because it is a cofactor for hydroxylases required for post-translational modifications that stabilize collagen. We have created mice deficient in the mouse ortholog (solute carrier family 23 member 1 or Slc23a1) of a rat ascorbic-acid transporter, Svct2 (ref. 4). Cultured embryonic fibroblasts from homozygous Slc23a1(-/-) mice had less than 5% of normal ascorbic-acid uptake. Ascorbic-acid levels were undetectable or markedly reduced in the blood and tissues of Slc23a1(-/-) mice. Prenatal supplementation of pregnant females did not elevate blood ascorbic acid in Slc23a1(-/-) fetuses, suggesting Slc23a1 is important in placental ascorbic-acid transport. Slc23a1(-/-) mice died within a few minutes of birth with respiratory failure and intraparenchymal brain hemorrhage. Lungs showed no postnatal expansion but had normal surfactant protein B levels. Brain hemorrhage was unlikely to be simply a form of scurvy since Slc23a1(-/-) mice showed no hemorrhage in any other tissues and their skin had normal skin 4-hydroxyproline levels despite low ascorbic-acid content. We conclude that Slc23a1 is required for transport of ascorbic acid into many tissues and across the placenta. Deficiency of the transporter is lethal in newborn mice, thereby revealing a previously unrecognized requirement for ascorbic acid in the perinatal period.


Subject(s)
Ascorbic Acid/metabolism , Brain/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters , Animals , Embryonic and Fetal Development , Female , Gene Expression Regulation, Developmental , Genes, Essential , Humans , Mice , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/deficiency , Organic Anion Transporters, Sodium-Dependent/metabolism , Restriction Mapping , Sodium-Coupled Vitamin C Transporters
14.
Pediatrics ; 147(5)2021 05.
Article in English | MEDLINE | ID: mdl-33863843

ABSTRACT

BACKGROUND: In preterm infants who require mechanical ventilation (MV), volume-targeted ventilation (VTV) modes are associated with lower rates of bronchopulmonary dysplasia compared with pressure-limited ventilation. Bronchopulmonary dysplasia rates in our NICU were higher than desired, prompting quality improvement initiatives to improve MV by increasing the use of VTV. METHODS: We implemented and tested interventions over a 3-year period. Primary outcomes were the percentage of conventional MV hours when any-VTV mode was used and the percentage of conventional MV hours when an exclusively VTV mode was used. Exclusively VTV modes were modes in which all breaths were volume targeted. We evaluated outcomes during 3 project periods: baseline (May 2016-December 2016); epoch 1 (December 2016-October 2018), increasing the use of any-VTV mode; and epoch 2 (October 2018-November 2019), increasing the use of exclusively VTV modes. RESULTS: Use of any-VTV mode increased from 18 694 of 22 387 (83%) MV hours during baseline to 72 846 of 77 264 (94%) and 58 174 of 60 605 (96%) MV hours during epochs 1 and 2, respectively (P < .001). Use of exclusively VTV increased from 5967 of 22 387 (27%) during baseline to 47 364 of 77 264 (61%) and 46 091 of 60 605 (76%) of all conventional MV hours during epochs 1 and 2, respectively (P < .001). In statistical process control analyses, multiple interventions were associated with improvements in primary outcomes. Measured clinical outcomes were unchanged. CONCLUSIONS: Quality improvement interventions were associated with improved use of VTV but no change in measured clinical outcomes.


Subject(s)
Bronchopulmonary Dysplasia/prevention & control , Intensive Care Units, Neonatal , Quality Improvement , Respiration, Artificial/methods , Bronchopulmonary Dysplasia/etiology , Humans , Infant, Newborn , Infant, Premature , Respiration, Artificial/adverse effects , Respiration, Artificial/statistics & numerical data , Time Factors
15.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33180746

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) novel coronavirus 2019 (COVID-19) global pandemic has led to millions of cases and hundreds of thousands of deaths. While older adults appear at high risk for severe disease, hospitalizations and deaths due to SARS-CoV-2 among children have been relatively rare. Integrating single-cell RNA sequencing (scRNA-seq) of developing mouse lung with temporally resolved immunofluorescence in mouse and human lung tissue, we found that expression of SARS-CoV-2 Spike protein primer TMPRSS2 was highest in ciliated cells and type I alveolar epithelial cells (AT1), and TMPRSS2 expression increased with aging in mice and humans. Analysis of autopsy tissue from fatal COVID-19 cases detected SARS-CoV-2 RNA most frequently in ciliated and secretory cells in airway epithelium and AT1 cells in peripheral lung. SARS-CoV-2 RNA was highly colocalized in cells expressing TMPRSS2. Together, these data demonstrate the cellular spectrum infected by SARS-CoV-2 in lung epithelium and suggest that developmental regulation of TMPRSS2 may underlie the relative protection of infants and children from severe respiratory illness.


Subject(s)
Alveolar Epithelial Cells/enzymology , COVID-19/enzymology , COVID-19/metabolism , Gene Expression Regulation, Enzymologic , SARS-CoV-2/metabolism , Serine Endopeptidases/biosynthesis , Adult , Aging , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Animals , COVID-19/pathology , Child, Preschool , Disease Models, Animal , Female , Humans , Infant , Male , Mice
16.
Cell Rep ; 36(9): 109636, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34469722

ABSTRACT

Alveolar epithelial type 2 cell (AEC2) dysfunction is implicated in the pathogenesis of adult and pediatric interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF); however, identification of disease-initiating mechanisms has been impeded by inability to access primary AEC2s early on. Here, we present a human in vitro model permitting investigation of epithelial-intrinsic events culminating in AEC2 dysfunction, using patient-specific induced pluripotent stem cells (iPSCs) carrying an AEC2-exclusive disease-associated variant (SFTPCI73T). Comparing syngeneic mutant versus gene-corrected iPSCs after differentiation into AEC2s (iAEC2s), we find that mutant iAEC2s accumulate large amounts of misprocessed and mistrafficked pro-SFTPC protein, similar to in vivo changes, resulting in diminished AEC2 progenitor capacity, perturbed proteostasis, altered bioenergetic programs, time-dependent metabolic reprogramming, and nuclear factor κB (NF-κB) pathway activation. Treatment of SFTPCI73T-expressing iAEC2s with hydroxychloroquine, a medication used in pediatric ILD, aggravates the observed perturbations. Thus, iAEC2s provide a patient-specific preclinical platform for modeling the epithelial-intrinsic dysfunction at ILD inception.


Subject(s)
Alveolar Epithelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Lung Diseases, Interstitial/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Alveolar Epithelial Cells/pathology , Animals , Cell Line , Cell Proliferation , Energy Metabolism , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/pathology , Inflammation Mediators/metabolism , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Mice, Knockout , Mutation , NF-kappa B/metabolism , Phenotype , Proteostasis , Pulmonary Surfactant-Associated Protein C/metabolism , Signal Transduction
17.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33108351

ABSTRACT

Emerging evidence indicates that early life events can increase the risk for developing chronic obstructive pulmonary disease (COPD). Using an inducible transgenic mouse model for NF-κB activation in the airway epithelium, we found that a brief period of inflammation during the saccular stage (P3-P5) but not alveolar stage (P10-P12) of lung development disrupted elastic fiber assembly, resulting in permanent reduction in lung function and development of a COPD-like lung phenotype that progressed through 24 months of age. Neutrophil depletion prevented disruption of elastic fiber assembly and restored normal lung development. Mechanistic studies uncovered a role for neutrophil elastase (NE) in downregulating expression of critical elastic fiber assembly components, particularly fibulin-5 and elastin. Further, purified human NE and NE-containing exosomes from tracheal aspirates of premature infants with lung inflammation downregulated elastin and fibulin-5 expression by saccular-stage mouse lung fibroblasts. Together, our studies define a critical developmental window for assembling the elastin scaffold in the distal lung, which is required to support lung structure and function throughout the lifespan. Although neutrophils play a well-recognized role in COPD development in adults, neutrophilic inflammation may also contribute to early-life predisposition to COPD.


Subject(s)
Elastin/metabolism , Neutrophils/metabolism , Pulmonary Alveoli/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , Elastin/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Leukocyte Elastase/genetics , Leukocyte Elastase/metabolism , Mice , Mice, Transgenic , Neutrophils/pathology , Pulmonary Alveoli/pathology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology
18.
Pediatr Res ; 67(5): 521-5, 2010 May.
Article in English | MEDLINE | ID: mdl-20098340

ABSTRACT

Clinical trials demonstrated decreasing rates of bronchopulmonary dysplasia in preterm infants with hypoxic respiratory failure treated with inhaled nitric oxide (iNO). However, the molecular and biochemical effects of iNO on developing human fetal lungs remain vastly unknown. By using a well-characterized model of human fetal alveolar type II cells, we assessed the effects of iNO and hyperoxia, independently and concurrently, on NO-cGMP signaling pathway and differentiation. Exposure to iNO increased cGMP levels by 40-fold after 3 d and by 8-fold after 5 d despite constant expression of phosphodiesterase-5 (PDE5). The levels of cGMP declined significantly on exposure to iNO and hyperoxia at 3 and 5 d, although expression of soluble guanylyl cyclase (sGC) was sustained. Surfactant proteins B and C (SP-B, SP-C) and thyroid transcription factor (TTF)-1 mRNA levels increased in cells exposed to iNO in normoxia but not on exposure to iNO plus hyperoxia. Collectively, these data indicate an increase in type II cell markers when undifferentiated lung epithelial cells are exposed to iNO in room air. However, hyperoxia overrides these potentially beneficial effects of iNO despite sustained expression of sGC.


Subject(s)
Alveolar Epithelial Cells/metabolism , Cell Differentiation , Nitric Oxide/metabolism , Oxygen/metabolism , Biomarkers/metabolism , Cell Hypoxia , Cells, Cultured , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Gene Expression Regulation , Gestational Age , Guanylate Cyclase/metabolism , Humans , Nuclear Proteins/genetics , Pulmonary Surfactant-Associated Protein B/genetics , Pulmonary Surfactant-Associated Protein C/genetics , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction , Soluble Guanylyl Cyclase , Thyroid Nuclear Factor 1 , Time Factors , Transcription Factors/genetics
19.
Pediatr Res ; 67(6): 585-90, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20220547

ABSTRACT

Stretch is an essential mechanism for lung growth and development. Animal models in which fetal lungs have been chronically over or underdistended demonstrate a disrupted mix of type II and type I cells, with static overdistention typically promoting a type I cell phenotype. The Rho GTPase family, key regulators of cytoskeletal signaling, are known to mediate cellular differentiation in response to stretch in other organs. Using a well-described model of alveolar epithelial cell differentiation and a validated stretch device, we investigated the effects of supraphysiologic stretch on human fetal lung alveolar epithelial cell phenotype. Static stretch applied to epithelial cells suppressed type II cell markers (SP-B and Pepsinogen C, PGC), and induced type I cell markers (Caveolin-1, Claudin 7 and Plasminogen Activator Inhibitor-1, PAI-1) as predicted. Static stretch was also associated with Rho A activation. Furthermore, the Rho kinase inhibitor Y27632 decreased Rho A activation and blunted the stretch-induced changes in alveolar epithelial cell marker expression. Together these data provide further evidence that mechanical stimulation of the cytoskeleton and Rho activation are key upstream events in mechanotransduction-associated alveolar epithelial cell differentiation.


Subject(s)
Alveolar Epithelial Cells/enzymology , Cell Differentiation , Cell Shape , Mechanotransduction, Cellular , rhoA GTP-Binding Protein/metabolism , Alveolar Epithelial Cells/drug effects , Amides/pharmacology , Biomarkers/metabolism , Caveolin 1/metabolism , Cell Differentiation/drug effects , Cell Shape/drug effects , Cells, Cultured , Claudins , Gestational Age , Humans , Lung/embryology , Lung/enzymology , Mechanotransduction, Cellular/drug effects , Membrane Proteins/metabolism , Pepsinogen C/metabolism , Phenotype , Plasminogen Activator Inhibitor 1/metabolism , Protein Kinase Inhibitors/pharmacology , Pulmonary Surfactant-Associated Protein B/metabolism , Pyridines/pharmacology , Stress Fibers/metabolism , Time Factors , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
20.
JCI Insight ; 5(2)2020 01 30.
Article in English | MEDLINE | ID: mdl-31873073

ABSTRACT

Integrins, the extracellular matrix receptors that facilitate cell adhesion and migration, are necessary for organ morphogenesis; however, their role in maintaining adult tissue homeostasis is poorly understood. To define the functional importance of ß1 integrin in adult mouse lung, we deleted it after completion of development in type 2 alveolar epithelial cells (AECs). Aged ß1 integrin-deficient mice exhibited chronic obstructive pulmonary disease-like (COPD-like) pathology characterized by emphysema, lymphoid aggregates, and increased macrophage infiltration. These histopathological abnormalities were preceded by ß1 integrin-deficient AEC dysfunction such as excessive ROS production and upregulation of NF-κB-dependent chemokines, including CCL2. Genetic deletion of the CCL2 receptor, Ccr2, in mice with ß1 integrin-deficient type 2 AECs impaired recruitment of monocyte-derived macrophages and resulted in accelerated inflammation and severe premature emphysematous destruction. The lungs exhibited reduced AEC efferocytosis and excessive numbers of inflamed type 2 AECs, demonstrating the requirement for recruited monocytes/macrophages in limiting lung injury and remodeling in the setting of a chronically inflamed epithelium. These studies support a critical role for ß1 integrin in alveolar homeostasis in the adult lung.


Subject(s)
Alveolar Epithelial Cells/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Pneumonia/metabolism , Aging/metabolism , Alveolar Epithelial Cells/pathology , Animals , Cell Adhesion , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokines/genetics , Chemokines/metabolism , Disease Models, Animal , Epithelium , Lung/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Receptors, CCR2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL