ABSTRACT
Introduction: The mutated in colorectal cancer (MCC) gene was initially identified as a candidate tumor suppressor gene in colorectal cancer, acting as a negative regulator of cell cycle progression. However, its functional roles in brain tumors, particularly glioblastoma, remain largely unexplored. This study reveals a significant association between MCC status and glioblastoma. Methods: We explored MCC expression in the glioblastoma database, patient samples, and cell lines. We investigated the proliferation and migration of the cell lines in MCC gene knockdown using small interfering RNA. Results: In vitro analyses revealed elevated protein and mRNA levels of MCC in several glioblastoma cell lines (U118MG and T98G). Silencing MCC expression via siRNA-mediated knockdown resulted in increased proliferation and migration of these cell lines. Supporting these findings, analyses of The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Genotype-Tissue Expression (GTEx) databases confirmed higher MCC expression in glioblastoma tumors than in normal brain tissue. Importantly, we observed that high MCC expression was associated with poor prognosis in glioblastoma patients, highlighting its potential role in disease progression. Additionally, this study identifies a nuclear localization of MCC in the glioblastoma cell line. Discussion: These findings indicate that MCC expression is significantly upregulated in glioblastoma and may play a role in its pathophysiology, warranting further investigation.
ABSTRACT
Acylcoenzyme A thioesterases (ACOTs) are crucial in mediating lipid metabolic functions, including energy expenditure, hepatic gluconeogenesis and neuronal function. The two distinct types are type I and II ACOTs, the latter of which are 'hotdog' fold superfamily members. Type II ACOTs include carboxylterminal modulator protein 1 (CTMP1), also termed thioesterase superfamily member 4 (THEM4), and CTMP2, also termed THEM5. Due to their similar structural features and distinct sequence homology, CTMP1 and CTMP2 stand out from other type II ACOTs. CTMP1 was initially known as a protein kinase B (PKB) inhibitor that attenuates PKB phosphorylation. PKB is the central regulator of various cellular functions, including survival, proliferation, growth and metabolism. Therefore, by inhibiting PKB, CTMP1 can affect various cellular processes. Various other functions of CTMP1 have been revealed, including functions in cancer, brain injury, mitochondrial function and lipid metabolism. CTMP2 is a paralog of CTMP1 and was first identified as a cardiolipin remodeling factor involved in the development of fatty liver. As the functions of CTMP1 and CTMP2 were discovered separately, a review to summarize and connect these findings is essential. The current review delineates the intricate complexity of CTMP regulation across different metabolic pathways and encapsulates the principal discoveries concerning CTMP until the present day.
Subject(s)
Lipid Metabolism , Palmitoyl-CoA Hydrolase , Humans , Animals , Palmitoyl-CoA Hydrolase/metabolism , Palmitoyl-CoA Hydrolase/genetics , Thiolester Hydrolases/metabolism , Thiolester Hydrolases/genetics , Energy Metabolism , Membrane Proteins , Adaptor Proteins, Signal TransducingABSTRACT
Muscle atrophy is a debilitating condition with various causes; while aging is one of these causes, reduced engagement in routine musclestrengthening activities also markedly contributes to muscle loss. Although extensive research has been conducted on microRNAs (miRNAs/miRs) and their associations with muscle atrophy, the roles played by miRNA precursors remain underexplored. The present study detected the upregulation of the miR206 precursor in cellfree (cf)RNA from the plasma of patients at risk of sarcopenia, and in cfRNAs from the muscles of mice subjected to muscle atrophy. Additionally, a decline in the levels of the miR6516 precursor was observed in mice with muscle atrophy. The administration of mimicmiR6516 to mice immobilized due to injury inhibited muscle atrophy by targeting and inhibiting cyclindependent kinase inhibitor 1b (Cdkn1b). Based on these results, the miR206 precursor appears to be a potential biomarker of muscle atrophy, whereas miR6516 shows promise as a therapeutic target to alleviate muscle deterioration in patients with muscle disuse and atrophy.
Subject(s)
MicroRNAs , Muscular Atrophy , Muscular Disorders, Atrophic , Adult , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Biomarkers , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Disorders, Atrophic/genetics , Muscular Disorders, Atrophic/metabolism , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/therapy , Sarcopenia/metabolism , Sarcopenia/genetics , Sarcopenia/pathology , Sarcopenia/therapyABSTRACT
Muscular atrophy, which results in loss of muscle mass and strength, is a significant concern for patients with various diseases. It is crucial to comprehend the molecular mechanisms underlying this condition to devise targeted treatments. MicroRNAs (miRNAs) have emerged as key regulators of gene expression, serving vital roles in numerous cellular processes, including the maintenance of muscle stability. An intricate network of miRNAs finely regulates gene expression, influencing pathways related to muscle protein production, and muscle breakdown and regeneration. Dysregulation of specific miRNAs has been linked to the development of muscular atrophy, affecting important signaling pathways including the protein kinase B/mTOR and ubiquitinproteasome systems. The present review summarizes recent work on miRNA patterns associated with muscular atrophy under various physiological and pathological conditions, elucidating its intricate regulatory networks. In conclusion, the present review lays a foundation for the development of novel treatment options for individuals affected by muscular atrophy, and explores other regulatory pathways, such as autophagy and inflammatory signaling, to ensure a comprehensive overview of the multifarious nature of muscular atrophy. The objective of the present review was to elucidate the complex molecular pathways involved in muscular atrophy, and to facilitate the development of innovative and specific therapeutic strategies for the prevention or reversal of muscular atrophy in diverse clinical scenarios.
Subject(s)
MicroRNAs , Muscular Diseases , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Muscular Atrophy/therapy , Muscular Atrophy/metabolism , Signal Transduction/geneticsABSTRACT
Scavenger Receptor Class F Member 2 (SCARF2), also known as the Type F Scavenger Receptor Family gene, encodes for Scavenger Receptor Expressed by Endothelial Cells 2 (SREC-II). This protein is a crucial component of the scavenger receptor family and is vital in protecting mammals from infectious diseases. Although research on SCARF2 is limited, mutations in this protein have been shown to cause skeletal abnormalities in both SCARF2-deficient mice and individuals with Van den Ende-Gupta syndrome (VDEGS), which is also associated with SCARF2 mutations. In contrast, other scavenger receptors have demonstrated versatile responses and have been found to aid in pathogen elimination, lipid transportation, intracellular cargo transportation, and work in tandem with various coreceptors. This review will concentrate on recent progress in comprehending SCARF2 and the functions played by members of the Scavenger Receptor Family in pre-diagnostic diseases.