Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Circulation ; 146(24): e334-e482, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36322642

ABSTRACT

AIM: The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" provides recommendations to guide clinicians in the diagnosis, genetic evaluation and family screening, medical therapy, endovascular and surgical treatment, and long-term surveillance of patients with aortic disease across its multiple clinical presentation subsets (ie, asymptomatic, stable symptomatic, and acute aortic syndromes). METHODS: A comprehensive literature search was conducted from January 2021 to April 2021, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, CINHL Complete, and other selected databases relevant to this guideline. Additional relevant studies, published through June 2022 during the guideline writing process, were also considered by the writing committee, where appropriate. Structure: Recommendations from previously published AHA/ACC guidelines on thoracic aortic disease, peripheral artery disease, and bicuspid aortic valve disease have been updated with new evidence to guide clinicians. In addition, new recommendations addressing comprehensive care for patients with aortic disease have been developed. There is added emphasis on the role of shared decision making, especially in the management of patients with aortic disease both before and during pregnancy. The is also an increased emphasis on the importance of institutional interventional volume and multidisciplinary aortic team expertise in the care of patients with aortic disease.


Subject(s)
Aortic Diseases , Bicuspid Aortic Valve Disease , Cardiology , Female , Humans , Pregnancy , American Heart Association , Aortic Diseases/diagnosis , Aortic Diseases/therapy , Research Report , United States
2.
J Biomed Inform ; 139: 104319, 2023 03.
Article in English | MEDLINE | ID: mdl-36791900

ABSTRACT

Despite the creation of thousands of machine learning (ML) models, the promise of improving patient care with ML remains largely unrealized. Adoption into clinical practice is lagging, in large part due to disconnects between how ML practitioners evaluate models and what is required for their successful integration into care delivery. Models are just one component of care delivery workflows whose constraints determine clinicians' abilities to act on models' outputs. However, methods to evaluate the usefulness of models in the context of their corresponding workflows are currently limited. To bridge this gap we developed APLUS, a reusable framework for quantitatively assessing via simulation the utility gained from integrating a model into a clinical workflow. We describe the APLUS simulation engine and workflow specification language, and apply it to evaluate a novel ML-based screening pathway for detecting peripheral artery disease at Stanford Health Care.


Subject(s)
Delivery of Health Care , Machine Learning , Humans , Computer Simulation , Workflow , Language
3.
Circulation ; 135(15): 1417-1428, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28209728

ABSTRACT

BACKGROUND: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute-sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow-derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. METHODS: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. RESULTS: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] -0.6 to 2.5; P=0.238), collateral count (0.9±0.6 arteries; 95% CI, -0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, -0.8 to 0.8; P=0.978), and capillary perfusion (-0.2±0.6%; 95% CI, -1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1-2.9; P=0.047) in participants with completely occluded femoral arteries. CONCLUSIONS: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01774097.


Subject(s)
Cell- and Tissue-Based Therapy , Peripheral Arterial Disease/therapy , Aged , Aldehyde Dehydrogenase/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Comorbidity , Exercise , Extremities/blood supply , Female , Follow-Up Studies , Humans , Intermittent Claudication/therapy , Male , Middle Aged , Perfusion , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/metabolism , Quality of Life , Risk Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL