Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Biochemistry ; 63(1): 171-180, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38113455

ABSTRACT

Genetically encoded sensors enable quantitative imaging of analytes in live cells. Sensors are commonly constructed by combining ligand-binding domains with one or more sensitized fluorescent protein (FP) domains. Sensors based on a single FP can be susceptible to artifacts caused by changes in sensor levels or distribution in vivo. To develop intensiometric sensors with the capacity for ratiometric quantification, dual-FP Matryoshka sensors were generated by using a single cassette with a large Stokes shift (LSS) reference FP nested within the reporter FP (cpEGFP). Here, we present a genetically encoded calcium sensor that employs green apple (GA) Matryoshka technology by incorporating a newly designed red LSSmApple fluorophore. LSSmApple matures faster and provides an optimized excitation spectrum overlap with cpEGFP, allowing for monochromatic coexcitation with blue light. The LSS of LSSmApple results in improved emission spectrum separation from cpEGFP, thereby minimizing fluorophore bleed-through and facilitating imaging using standard dichroic and red FP (RFP) emission filters. We developed an image analysis pipeline for yeast (Saccharomyces cerevisiae) timelapse imaging that utilizes LSSmApple to segment and track cells for high-throughput quantitative analysis. In summary, we engineered a new FP, constructed a genetically encoded calcium indicator (GA-MatryoshCaMP6s), and performed calcium imaging in yeast as a demonstration.


Subject(s)
Calcium , Saccharomyces cerevisiae , Luminescent Proteins/chemistry , Calcium/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Red Fluorescent Protein , Fluorescent Dyes
2.
J Mol Cell Cardiol ; 175: 29-43, 2023 02.
Article in English | MEDLINE | ID: mdl-36493853

ABSTRACT

Regenerating the injured heart remains one of the most vexing challenges in cardiovascular medicine. Cell therapy has shown potential for treatment of myocardial infarction, but low cell retention so far has limited its success. Here we show that intramyocardial injection of highly apoptosis-resistant unrestricted somatic stem cells (USSC) into infarcted rat hearts resulted in an unprecedented thickening of the left ventricular wall with cTnT+/BrdU+ cardiomyocytes that was paralleled by progressively restored ejection fraction. USSC induced significant T-cell enrichment in ischemic tissue with enhanced expression of T-cell related cytokines. Inhibition of T-cell activation by anti-CD28 monoclonal antibody, fully abolished the regenerative response which was restored by adoptive T-cell transfer. Secretome analysis of USSC and lineage tracing studies suggest that USSC secrete paracrine factors over an extended period of time which boosts a T-cell driven endogenous regenerative response mainly from adult cardiomyocytes.


Subject(s)
Adult Stem Cells , Myocardial Infarction , Rats , Animals , T-Lymphocytes , Myocardial Infarction/therapy , Myocytes, Cardiac , Cytokines
3.
New Phytol ; 238(2): 637-653, 2023 04.
Article in English | MEDLINE | ID: mdl-36636779

ABSTRACT

Plasmodesmata (PD) facilitate movement of molecules between plant cells. Regulation of this movement is still not understood. Plasmodesmata are hard to study, being deeply embedded within cell walls and incorporating several membrane types. Thus, structure and protein composition of PD remain enigmatic. Previous studies of PD protein composition identified protein lists with few validations, making functional conclusions difficult. We developed a PD scoring approach in iteration with large-scale systematic localization, defining a high-confidence PD proteome of Physcomitrium patens (HC300). HC300, together with bona fide PD proteins from literature, were placed in Pddb. About 65% of proteins in HC300 were not previously PD-localized. Callose-degrading glycolyl hydrolase family 17 (GHL17) is an abundant protein family with representatives across evolutionary scale. Among GHL17s, we exclusively found members of one phylogenetic clade with PD localization and orthologs occur only in species with developed PD. Phylogenetic comparison was expanded to xyloglucan endotransglucosylases/hydrolases and Exordium-like proteins, which also diversified into PD-localized and non-PD-localized members on distinct phylogenetic clades. Our high-confidence PD proteome HC300 provides insights into diversification of large protein families. Iterative and systematic large-scale localization across plant species strengthens the reliability of HC300 as basis for exploring structure, function, and evolution of this important organelle.


Subject(s)
Plasmodesmata , Proteome , Proteome/metabolism , Plasmodesmata/metabolism , Phylogeny , Reproducibility of Results , Cell Wall/metabolism
4.
Mol Pharm ; 20(4): 2080-2093, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36897219

ABSTRACT

Amorphous-Amorphous phase separation (AAPS) is an important phenomenon that can impede the performance of amorphous solid dispersions (ASDs). The purpose of this study was to develop a sensitive approach relying on dielectric spectroscopy (DS) to characterize AAPS in ASDs. This includes detecting AAPS, determining the size of the active ingredient (AI) discrete domains in the phase-separated systems, and accessing the molecular mobility in each phase. Using a model system consisting of the insecticide imidacloprid (IMI) and the polymer polystyrene (PS), the dielectric results were further confirmed by confocal fluorescence microscopy (CFM). The detection of AAPS by DS was accomplished by identifying the decoupled structural (α-)dynamics of the AI and the polymer phase. The α-relaxation times corresponding to each phase correlated reasonably well with those of the pure components, implying nearly complete macroscopic phase separation. Congruent with the DS results, the occurrence of the AAPS was detected by means of CFM, making use of the autofluorescent property of IMI. Oscillatory shear rheology and differential scanning calorimetry (DSC) detected the glass transition of the polymer phase but not that of the AI phase. Furthermore, the otherwise undesired effects of interfacial and electrode polarization, which can appear in DS, were exploited to determine the effective domain size of the discrete AI phase in this work. Here, stereological analysis of CFM images probing the mean diameter of the phase-separated IMI domains directly stayed in reasonably good agreement with the DS-based estimates. The size of phase-separated microclusters showed little variation with AI loading, implying that the ASDs have presumably undergone AAPS upon manufacturing. DSC provided further support to the immiscibility of IMI and PS, as no discernible melting point depression of the corresponding physical mixtures was detected. Moreover, no signatures of strong attractive AI-polymer interactions could be detected by mid-infrared spectroscopy within this ASD system. Finally, dielectric cold crystallization experiments of the pure AI and the 60 wt % dispersion revealed comparable crystallization onset times, hinting at a poor inhibition of the AI crystallization within the ASD. These observations are in harmony with the occurrence of AAPS. In conclusion, our multifaceted experimental approach opens new venues for rationalizing the mechanisms and kinetics of phase separation in amorphous solid dispersions.


Subject(s)
Nitro Compounds , Polymers , Crystallization/methods , Polymers/chemistry , Neonicotinoids , Solubility , Calorimetry, Differential Scanning
5.
Proc Natl Acad Sci U S A ; 117(5): 2634-2644, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31964834

ABSTRACT

During invasion of host cells, Chlamydia pneumoniae secretes the effector protein CPn0678, which facilitates internalization of the pathogen by remodeling the target cell's plasma membrane and recruiting sorting nexin 9 (SNX9), a central multifunctional endocytic scaffold protein. We show here that the strongly amphipathic N-terminal helix of CPn0678 mediates binding to phospholipids in both the plasma membrane and synthetic membranes, and is sufficient to induce extensive membrane tubulations. CPn0678 interacts via its conserved C-terminal polyproline sequence with the Src homology 3 domain of SNX9. Thus, SNX9 is found at bacterial entry sites, where C. pneumoniae is internalized via EGFR-mediated endocytosis. Moreover, depletion of human SNX9 significantly reduces internalization, whereas ectopic overexpression of CPn0678-GFP results in a dominant-negative effect on endocytotic processes in general, leading to the uptake of fewer chlamydial elementary bodies and diminished turnover of EGFR. Thus, CPn0678 is an early effector involved in regulating the endocytosis of C. pneumoniae in an EGFR- and SNX9-dependent manner.


Subject(s)
Cell Membrane/chemistry , Chlamydia Infections/microbiology , Chlamydia/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/microbiology , Chlamydia Infections/genetics , Chlamydia Infections/metabolism , Chlamydia Infections/physiopathology , Endocytosis , Host-Pathogen Interactions , Humans , Sorting Nexins/genetics , Sorting Nexins/metabolism
6.
Proc Natl Acad Sci U S A ; 117(12): 6741-6751, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32152117

ABSTRACT

Neurodegenerative diseases feature specific misfolded or misassembled proteins associated with neurotoxicity. The precise mechanisms by which protein aggregates first arise in the majority of sporadic cases have remained unclear. Likely, a first critical mass of misfolded proteins starts a vicious cycle of a prion-like expansion. We hypothesize that viruses, having evolved to hijack the host cellular machinery for catalyzing their replication, lead to profound disturbances of cellular proteostasis, resulting in such a critical mass of protein aggregates. Here, we investigated the effect of influenza virus (H1N1) strains on proteostasis of proteins associated with neurodegenerative diseases in Lund human mesencephalic dopaminergic cells in vitro and infection of Rag knockout mice in vivo. We demonstrate that acute H1N1 infection leads to the formation of α-synuclein and Disrupted-in-Schizophrenia 1 (DISC1) aggregates, but not of tau or TDP-43 aggregates, indicating a selective effect on proteostasis. Oseltamivir phosphate, an antiinfluenza drug, prevented H1N1-induced α-synuclein aggregation. As a cell pathobiological mechanism, we identified H1N1-induced blocking of autophagosome formation and inhibition of autophagic flux. In addition, α-synuclein aggregates appeared in infected cell populations connected to the olfactory bulbs following intranasal instillation of H1N1 in Rag knockout mice. We propose that H1N1 virus replication in neuronal cells can induce seeds of aggregated α-synuclein or DISC1 that may be able to initiate further detrimental downstream events and should thus be considered a risk factor in the pathogenesis of synucleinopathies or a subset of mental disorders. More generally, aberrant proteostasis induced by viruses may be an underappreciated factor in initiating protein misfolding.


Subject(s)
Homeodomain Proteins/physiology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/complications , Orthomyxoviridae Infections/complications , Proteostasis , Synucleinopathies/etiology , alpha-Synuclein/chemistry , Animals , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Female , Humans , Influenza, Human/virology , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Orthomyxoviridae Infections/virology , Protein Multimerization , Synucleinopathies/metabolism , Synucleinopathies/pathology , alpha-Synuclein/metabolism
7.
Appl Environ Microbiol ; 88(3): e0189621, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34851699

ABSTRACT

Secretion systems are essential for Gram-negative bacteria, as these nanomachineries allow communication with the outside world by exporting proteins into the extracellular space or directly into the cytosol of a host cell. For example, type I secretion systems (T1SS) secrete a broad range of substrates across both membranes into the extracellular space. One well-known example is the hemolysin A (HlyA) T1SS from Escherichia coli, which consists of an ABC transporter (HlyB), a membrane fusion protein (HlyD), the outer membrane protein TolC, and the substrate HlyA, a member of the family of repeats in toxins (RTX) toxins. Here, we determined the amount of TolC at the endogenous level (parental strain, UTI89) and under conditions of overexpression [T7 expression system, BL21(DE3)-BD]. The overall amount of TolC was not influenced by the overexpression of the HlyBD complex. Moving one step further, we determined the localization of the HlyA T1SS by superresolution microscopy. In contrast to other bacterial secretion systems, no polarization was observed with respect to endogenous or overexpression levels. Additionally, the cell growth and division cycle did not influence polarization. Most importantly, the size of the observed T1SS clusters did not correlate with the recently proposed outer membrane islands. These data indicate that T1SS clusters at the outer membrane, generating domains of so-far-undescribed identity. IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains cause about 110 million urinary tract infections each year worldwide, representing a global burden to the health care system. UPEC strains secrete many virulence factors, among these, the TX toxin hemolysin A via a cognate T1SS into the extracellular space. In this study, we determined the endogenous copy number of the HlyA T1SS in UTI89 and analyzed the surface localization in BL21(DE3)-BD and UTI89, respectively. With approximately 800 copies of the T1SS in UTI89, this is one of the highest expressed bacterial secretion systems. Furthermore, and in clear contrast to other secretion systems, no polarized surface localization was detected. Finally, quantitative analysis of the superresolution data revealed that clusters of the HlyA T1SS are not related to the recently identified outer membrane protein islands. These data provide insights into the quantitative molecular architecture of the HlyA T1SS.


Subject(s)
Escherichia coli Proteins , Hemolysin Proteins , Uropathogenic Escherichia coli , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Hemolysin Proteins/metabolism , Type I Secretion Systems
8.
EMBO Rep ; 21(3): e49776, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32067344

ABSTRACT

The mitochondrial inner membrane can reshape under different physiological conditions. How, at which frequency this occurs in living cells, and the molecular players involved are unknown. Here, we show using state-of-the-art live-cell stimulated emission depletion (STED) super-resolution nanoscopy that neighbouring crista junctions (CJs) dynamically appose and separate from each other in a reversible and balanced manner in human cells. Staining of cristae membranes (CM), using various protein markers or two lipophilic inner membrane-specific dyes, further revealed that cristae undergo continuous cycles of membrane remodelling. These events are accompanied by fluctuations of the membrane potential within distinct cristae over time. Both CJ and CM dynamics depended on MIC13 and occurred at similar timescales in the range of seconds. Our data further suggest that MIC60 acts as a docking platform promoting CJ and contact site formation. Overall, by employing advanced imaging techniques including fluorescence recovery after photobleaching (FRAP), single-particle tracking (SPT), live-cell STED and high-resolution Airyscan microscopy, we propose a model of CJ dynamics being mechanistically linked to CM remodelling representing cristae membrane fission and fusion events occurring within individual mitochondria.


Subject(s)
Mitochondrial Membranes , Mitochondrial Proteins , HeLa Cells , Humans , Mitochondria , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism
10.
Int J Mol Sci ; 20(3)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30678160

ABSTRACT

Protein export in eukaryotes can either occur via the classical pathway traversing the endomembrane system or exploit alternative routes summarized as unconventional secretion. Besides multiple examples in higher eukaryotes, unconventional secretion has also been described for fungal proteins with diverse functions in important processes such as development or virulence. Accumulating molecular insights into the different export pathways suggest that unconventional secretion in fungal microorganisms does not follow a common scheme but has evolved multiple times independently. In this study, we review the most prominent examples with a focus on the chitinase Cts1 from the corn smut Ustilago maydis. Cts1 participates in cell separation during budding growth. Recent evidence indicates that the enzyme might be actively translocated into the fragmentation zone connecting dividing mother and daughter cells, where it supports cell division by the degradation of remnant chitin. Importantly, a functional fragmentation zone is prerequisite for Cts1 release. We summarize in detail what is currently known about this potential lock-type mechanism of Cts1 secretion and its connection to the complex regulation of fragmentation zone assembly and cell separation.


Subject(s)
Ustilago/cytology , Ustilago/metabolism , Cell Division/genetics , Cell Division/physiology , Cell Separation , Chitinases/genetics , Chitinases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ustilago/genetics
11.
Biomacromolecules ; 19(10): 4034-4043, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30114911

ABSTRACT

Velvet worms secrete a fluid hunting slime comprised of a dispersion of nanoglobules that form microfibers under small mechanical shear forces, facilitating the rapid formation of stiff biopolymeric fibers. Here, we demonstrate that the nanoglobules are held together and stabilized as a dispersion by electrostatic interactions reminiscent of coacervate-based natural adhesives. Variation of ionic strength and pH affects the stability of nanoglobules and their ability to form fibers. Fibers mainly consist of large (∼300 kDa), highly charged proteins, and current biochemical analysis reveals a high degree of protein phosphorylation and presence of divalent cations. Taken together, we surmise that polyampholytic protein sequences, phosphorylated sites, and ions give rise to transient ionic cross-linking, enabling reversible curing of ejected slime into high-stiffness fibers following dehydration. These results provide a deeper understanding of velvet worm adhesive fibers, which may stimulate new routes toward mechanoresponsive and sustainable materials.


Subject(s)
Adhesives/chemistry , Arthropod Proteins/metabolism , Arthropods/metabolism , Cross-Linking Reagents/chemistry , Nanostructures/chemistry , Phosphoproteins/metabolism , Static Electricity , Amino Acid Sequence , Animals , Arthropod Proteins/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Phosphoproteins/chemistry , Protein Processing, Post-Translational
12.
Life Sci Alliance ; 7(2)2024 02.
Article in English | MEDLINE | ID: mdl-37957016

ABSTRACT

Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.


Subject(s)
Mitochondria , Mitochondrial Membranes , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Oxidative Phosphorylation , Adenosine Triphosphate/metabolism , Mammals/metabolism
13.
Microlife ; 4: uqad002, 2023.
Article in English | MEDLINE | ID: mdl-37223739

ABSTRACT

The formation of plaques represents the hallmark of phage infection visualizing the clearance of the bacterial lawn in structured environments. In this study, we have addressed the impact of cellular development on phage infection in Streptomyces undergoing a complex developmental life cycle. Analysis of plaque dynamics revealed, after a period of plaque size enlargement, a significant regrowth of transiently phage-resistant Streptomyces mycelium into the lysis zone. Analysis of Streptomyces venezuelae mutant strains defective at different stages of cellular development indicated that this regrowth was dependent on the onset of the formation of aerial hyphae and spores at the infection interface. Mutants restricted to vegetative growth (ΔbldN) featured no significant constriction of plaque area. Fluorescence microscopy further confirmed the emergence of a distinct zone of cells/spores with reduced cell permeability towards propidium iodide staining at the plaque periphery. Mature mycelium was further shown to be significantly less susceptible to phage infection, which is less pronounced in strains defective in cellular development. Transcriptome analysis revealed the repression of cellular development at the early stages of phage infection probably facilitating efficient phage propagation. We further observed an induction of the chloramphenicol biosynthetic gene cluster highlighting phage infection as a trigger of cryptic metabolism in Streptomyces. Altogether, our study emphasizes cellular development and the emergence of transient phage resistance as an important layer of Streptomyces antiviral immunity.

14.
Protein Sci ; 32(11): e4797, 2023 11.
Article in English | MEDLINE | ID: mdl-37779215

ABSTRACT

Biochemical processes within the living cell occur in a highly crowded environment, where macromolecules, first of all proteins and nucleic acids, occupy up to 30% of the volume. The phenomenon of macromolecular crowding is not an exclusive feature of the cytoplasm and can be observed in the densely protein-packed, nonhomogeneous cellular membranes and at the membrane interfaces. Crowding affects diffusional and conformational dynamics of proteins within the lipid bilayer, alters kinetic and thermodynamic properties of biochemical reactions, and modulates the membrane organization. Despite its importance, the non-invasive quantification of the membrane crowding is not trivial. Here, we developed a genetically-encoded fluorescence-based sensor for probing the macromolecular crowding at the membrane interfaces. Two sensor variants, both composed of fluorescent proteins and a membrane anchor, but differing by flexible linker domains were characterized in vitro, and the procedures for the membrane reconstitution were established. Steric pressure induced by membrane-tethered synthetic and protein crowders altered the sensors' conformation, causing increase in the intramolecular Förster's resonance energy transfer. Notably, the effect of protein crowders only weakly correlated with their molecular weight, suggesting that other factors, such as shape and charge contribute to the crowding via the quinary interactions. Finally, measurements performed in inner membrane vesicles of Escherichia coli validated the crowding-dependent dynamics of the sensors in the physiologically relevant environment. The sensors offer broad opportunities to study interfacial crowding in a complex environment of native membranes, and thus add to the toolbox of methods for studying membrane dynamics and proteostasis.


Subject(s)
Escherichia coli , Proteins , Proteins/chemistry , Macromolecular Substances/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescence , Lipids
15.
Gels ; 8(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36005117

ABSTRACT

Micron-sized hard core-soft shell hybrid microgels are promising model systems for studies of soft matter as they enable in-situ optical investigations and their structures/morphologies can be engineered with a great variety. Yet, protocols that yield micron-sized core-shell microgels with a tailorable shell-to-core size ratio are rarely available. In this work, we report on the one-pot synthesis protocol for micron-sized silica-poly(N-isopropylacrylamide) core-shell microgels that has excellent control over the shell-to-core ratio. Small-angle light scattering and microscopy of 2- and 3-dimensional assemblies of the synthesized microgels confirm that the produced microgels are monodisperse and suitable for optical investigation even at high packing fractions.

16.
Sci Rep ; 12(1): 17825, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36280777

ABSTRACT

Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca2+-rich extracellular environment. Here we employed the E. coli HlyA T1SS as a heterologous surrogate system for the RTX toxin MbxA from the bovine pathogen Moraxella bovis. In E. coli the HlyA system successfully activates the heterologous MbxA substrate by acylation and secretes the precursor proMbxA and active MbxA allowing purification of both species in quantities sufficient for a variety of investigations. The activating E. coli acyltransferase HlyC recognizes the acylation sites in MbxA, but unexpectedly in a different acylation pattern as for its endogenous substrate HlyA. HlyC-activated MbxA shows host species-independent activity including a so-far unknown toxicity against human lymphocytes and epithelial cells. Using live-cell imaging, we show an immediate MbxA-mediated permeabilization and a rapidly developing blebbing of the plasma membrane in epithelial cells, which is associated with immediate cell death.


Subject(s)
Bacterial Proteins , Moraxella bovis , Humans , Acyltransferases , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Hemolysin Proteins/metabolism , Moraxella bovis/metabolism , Type I Secretion Systems
17.
Free Radic Biol Med ; 167: 81-93, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33711419

ABSTRACT

The macrophage capping protein CAPG belongs to the gelsolin superfamily which modulates actin dynamics by capping the growing end of actin filaments in a Ca2+- and PIP2-dependent manner resulting in polymerization inhibition of actin filaments. In the last years, additional functions for CAPG in transcription regulation were described and higher CAPG amounts have been linked to increased invasiveness and migration behavior in different human tumor entities like e.g. glioblastoma. Nevertheless, there is a lack of knowledge how additional functions of CAPG are regulated. As CAPG contains several cysteine residues which may be accessible to oxidation we were especially interested to investigate how alterations in the cysteine oxidation state may influence the function, localization, and regulation of CAPG. In the present study, we provide strong evidence that CAPG is a redox-sensitive protein and identified two cysteines: C282 and C290 as reversibly oxidized in glioblastoma cell lines. Whereas no evidence could be found that the canonical actin capping function of CAPG is redox-regulated, our results point to a novel role of the identified cysteines in the regulation of cell migration. Along with this, we found a localization shift out of the nucleus of CAPG and RAVER1, a potential interaction partner identified in our study which might explain the observed altered cell migration properties. The newly identified redox sensitive cysteines of CAPG could perspectively be considered as new targets for controlling tumor invasive properties.


Subject(s)
Glioblastoma , Actins/genetics , Actins/metabolism , Cell Line, Tumor , Cell Movement , Glioblastoma/genetics , Humans , Macrophages/metabolism , Microfilament Proteins , Nuclear Proteins , Oxidation-Reduction
18.
Nat Commun ; 12(1): 4634, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330900

ABSTRACT

Amyloid-ß peptide (Aß) forms metastable oligomers >50 kDa, termed AßOs, that are more effective than Aß amyloid fibrils at triggering Alzheimer's disease-related processes such as synaptic dysfunction and Tau pathology, including Tau mislocalization. In neurons, Aß accumulates in endo-lysosomal vesicles at low pH. Here, we show that the rate of AßO assembly is accelerated 8,000-fold upon pH reduction from extracellular to endo-lysosomal pH, at the expense of amyloid fibril formation. The pH-induced promotion of AßO formation and the high endo-lysosomal Aß concentration together enable extensive AßO formation of Aß42 under physiological conditions. Exploiting the enhanced AßO formation of the dimeric Aß variant dimAß we furthermore demonstrate targeting of AßOs to dendritic spines, potent induction of Tau missorting, a key factor in tauopathies, and impaired neuronal activity. The results suggest that the endosomal/lysosomal system is a major site for the assembly of pathomechanistically relevant AßOs.


Subject(s)
Amyloid beta-Peptides/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Neurons/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Animals , Cell Line, Tumor , Cells, Cultured , Dendritic Spines/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Neurons/cytology , Protein Multimerization
19.
Cells ; 9(5)2020 05 22.
Article in English | MEDLINE | ID: mdl-32456010

ABSTRACT

The γ-aminobutyric acid type A receptor-associated protein (GABARAP) and its close paralogs GABARAPL1 and GABARAPL2 constitute a subfamily of the autophagy-related 8 (Atg8) protein family. Being associated with a variety of dynamic membranous structures of autophagic and non-autophagic origin, Atg8 proteins functionalize membranes by either serving as docking sites for other proteins or by acting as membrane tethers or adhesion factors. In this study, we describe that deficiency for GABARAP alone, but not for its close paralogs, is sufficient for accelerated EGF receptor (EGFR) degradation in response to EGF, which is accompanied by the downregulation of EGFR-mediated MAPK signaling, altered target gene expression, EGF uptake, and EGF vesicle composition over time. We further show that GABARAP and EGFR converge in the same distinct compartments at endogenous GABARAP expression levels in response to EGF stimulation. Furthermore, GABARAP associates with EGFR in living cells and binds to synthetic peptides that are derived from the EGFR cytoplasmic tail in vitro. Thus, our data strongly indicate a unique and novel role for GABARAP during EGFR trafficking.


Subject(s)
Apoptosis Regulatory Proteins/deficiency , Epidermal Growth Factor/metabolism , Microtubule-Associated Proteins/deficiency , Proteolysis , Sequence Homology, Amino Acid , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Protein 8 Family/metabolism , Cell Line, Tumor , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Fluorescent Dyes/metabolism , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism , Models, Biological , Phosphorylation/drug effects , Proteasome Inhibitors/pharmacology , Proteolysis/drug effects , Signal Transduction/drug effects , Transport Vesicles/drug effects , Transport Vesicles/metabolism
20.
Plant Direct ; 3(12): e00189, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31844834

ABSTRACT

Receptor-like kinases (RLK) and receptor-like proteins (RLP) often interact in a combinatorial manner depending on tissue identity, membrane domains, or endo- and exogenous cues, and the same RLKs or RLPs can generate different signaling outputs depending on the composition of the receptor complexes they are involved in. Investigation of their interaction partners in a spatial and dynamic way is therefore of prime interest to understand their functions. This is, however, limited by the technical complexity of assessing it in endogenous conditions. A solution to close this gap is to determine protein interaction directly in the relevant tissues at endogenous expression levels using Förster resonance energy transfer (FRET). The ideal fluorophore pair for FRET must, however, fulfil specific requirements: (a) The emission and excitation spectra of the donor and acceptor, respectively, must overlap; (b) they should not interfere with proper folding, activity, or localization of the fusion proteins; (c) they should be sufficiently photostable in plant cells. Furthermore, the donor must yield sufficient photon counts at near-endogenous protein expression levels. Although many fluorescent proteins were reported to be suitable for FRET experiments, only a handful were already described for applications in plants. Herein, we compare a range of fluorophores, assess their usability to study RLK interactions by FRET-based fluorescence lifetime imaging (FLIM) and explore their differences in FRET efficiency. Our analysis will help to select the optimal fluorophore pair for diverse FRET applications.

SELECTION OF CITATIONS
SEARCH DETAIL