Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 389(1): 45-57, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37318140

ABSTRACT

BACKGROUND: Guidelines recommend normocapnia for adults with coma who are resuscitated after out-of-hospital cardiac arrest. However, mild hypercapnia increases cerebral blood flow and may improve neurologic outcomes. METHODS: We randomly assigned adults with coma who had been resuscitated after out-of-hospital cardiac arrest of presumed cardiac or unknown cause and admitted to the intensive care unit (ICU) in a 1:1 ratio to either 24 hours of mild hypercapnia (target partial pressure of arterial carbon dioxide [Paco2], 50 to 55 mm Hg) or normocapnia (target Paco2, 35 to 45 mm Hg). The primary outcome was a favorable neurologic outcome, defined as a score of 5 (indicating lower moderate disability) or higher, as assessed with the use of the Glasgow Outcome Scale-Extended (range, 1 [death] to 8, with higher scores indicating better neurologic outcome) at 6 months. Secondary outcomes included death within 6 months. RESULTS: A total of 1700 patients from 63 ICUs in 17 countries were recruited, with 847 patients assigned to targeted mild hypercapnia and 853 to targeted normocapnia. A favorable neurologic outcome at 6 months occurred in 332 of 764 patients (43.5%) in the mild hypercapnia group and in 350 of 784 (44.6%) in the normocapnia group (relative risk, 0.98; 95% confidence interval [CI], 0.87 to 1.11; P = 0.76). Death within 6 months after randomization occurred in 393 of 816 patients (48.2%) in the mild hypercapnia group and in 382 of 832 (45.9%) in the normocapnia group (relative risk, 1.05; 95% CI, 0.94 to 1.16). The incidence of adverse events did not differ significantly between groups. CONCLUSIONS: In patients with coma who were resuscitated after out-of-hospital cardiac arrest, targeted mild hypercapnia did not lead to better neurologic outcomes at 6 months than targeted normocapnia. (Funded by the National Health and Medical Research Council of Australia and others; TAME ClinicalTrials.gov number, NCT03114033.).


Subject(s)
Cardiopulmonary Resuscitation , Coma , Hypercapnia , Out-of-Hospital Cardiac Arrest , Adult , Humans , Carbon Dioxide/blood , Coma/blood , Coma/etiology , Hospitalization , Hypercapnia/blood , Hypercapnia/etiology , Out-of-Hospital Cardiac Arrest/blood , Out-of-Hospital Cardiac Arrest/complications , Out-of-Hospital Cardiac Arrest/therapy , Critical Care
2.
N Engl J Med ; 384(24): 2283-2294, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34133859

ABSTRACT

BACKGROUND: Targeted temperature management is recommended for patients after cardiac arrest, but the supporting evidence is of low certainty. METHODS: In an open-label trial with blinded assessment of outcomes, we randomly assigned 1900 adults with coma who had had an out-of-hospital cardiac arrest of presumed cardiac or unknown cause to undergo targeted hypothermia at 33°C, followed by controlled rewarming, or targeted normothermia with early treatment of fever (body temperature, ≥37.8°C). The primary outcome was death from any cause at 6 months. Secondary outcomes included functional outcome at 6 months as assessed with the modified Rankin scale. Prespecified subgroups were defined according to sex, age, initial cardiac rhythm, time to return of spontaneous circulation, and presence or absence of shock on admission. Prespecified adverse events were pneumonia, sepsis, bleeding, arrhythmia resulting in hemodynamic compromise, and skin complications related to the temperature management device. RESULTS: A total of 1850 patients were evaluated for the primary outcome. At 6 months, 465 of 925 patients (50%) in the hypothermia group had died, as compared with 446 of 925 (48%) in the normothermia group (relative risk with hypothermia, 1.04; 95% confidence interval [CI], 0.94 to 1.14; P = 0.37). Of the 1747 patients in whom the functional outcome was assessed, 488 of 881 (55%) in the hypothermia group had moderately severe disability or worse (modified Rankin scale score ≥4), as compared with 479 of 866 (55%) in the normothermia group (relative risk with hypothermia, 1.00; 95% CI, 0.92 to 1.09). Outcomes were consistent in the prespecified subgroups. Arrhythmia resulting in hemodynamic compromise was more common in the hypothermia group than in the normothermia group (24% vs. 17%, P<0.001). The incidence of other adverse events did not differ significantly between the two groups. CONCLUSIONS: In patients with coma after out-of-hospital cardiac arrest, targeted hypothermia did not lead to a lower incidence of death by 6 months than targeted normothermia. (Funded by the Swedish Research Council and others; TTM2 ClinicalTrials.gov number, NCT02908308.).


Subject(s)
Fever/therapy , Hypothermia, Induced , Out-of-Hospital Cardiac Arrest/therapy , Aged , Body Temperature , Cardiopulmonary Resuscitation/methods , Coma/etiology , Coma/therapy , Female , Fever/etiology , Humans , Hypothermia, Induced/adverse effects , Kaplan-Meier Estimate , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/complications , Out-of-Hospital Cardiac Arrest/mortality , Single-Blind Method , Treatment Outcome
3.
Crit Care ; 28(1): 215, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956665

ABSTRACT

BACKGROUND: Despite advances in resuscitation practice, patient survival following cardiac arrest remains poor. The utilization of MRI in neurological outcome prognostication post-cardiac arrest is growing and various classifications has been proposed; however a consensus has yet to be established. MRI, though valuable, is resource-intensive, time-consuming, costly, and not universally available. This study aims to validate a MRI lesion pattern score in a cohort of out of hospital cardiac arrest patients at a tertiary referral hospital in Switzerland. METHODS: This cohort study spanned twelve months from February 2021 to January 2022, encompassing all unconscious patients aged ≥ 18 years who experienced out-of-hospital cardiac arrest of any cause and were admitted to the intensive care unit (ICU) at Inselspital, University Hospital Bern, Switzerland. We included patients who underwent the neuroprognostication process, assessing the performance and validation of a MRI scoring system. RESULTS: Over the twelve-month period, 137 patients were admitted to the ICU, with 52 entering the neuroprognostication process and 47 undergoing MRI analysis. Among the 35 MRIs indicating severe hypoxic brain injury, 33 patients (94%) experienced an unfavourable outcome (UO), while ten (83%) of the twelve patients with no or minimal MRI lesions had a favourable outcome. This yielded a sensitivity of 0.94 and specificity of 0.83 for predicting UO with the proposed MRI scoring system. The positive and negative likelihood ratios were 5.53 and 0.07, respectively, resulting in an accuracy of 91.49%. CONCLUSION: We demonstrated the effectiveness of the MLP scoring scheme in predicting neurological outcome in patients following cardiac arrest. However, to ensure a comprehensive neuroprognostication, MRI results need to be combined with other assessments. While neuroimaging is a promising objective tool for neuroprognostication, given the absence of sedation-related confounders-compared to electroencephalogram (EEG) and clinical examination-the current lack of a validated scoring system necessitates further studies. Incorporating standardized MRI techniques and grading systems is crucial for advancing the reliability of neuroimaging for neuroprognostication. TRIAL REGISTRATION: Registry of all Projects in Switzerland (RAPS) 2020-01761.


Subject(s)
Magnetic Resonance Imaging , Out-of-Hospital Cardiac Arrest , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/statistics & numerical data , Male , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/diagnostic imaging , Female , Middle Aged , Retrospective Studies , Aged , Switzerland , Cohort Studies , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Predictive Value of Tests , Prognosis , Adult
4.
Am J Respir Crit Care Med ; 208(3): 270-279, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37192445

ABSTRACT

Rationale: Noninvasive respiratory support using a high-flow nasal cannula (HFNC) or noninvasive positive pressure ventilation (NIPPV) can decrease the risk of reintubation in patients being liberated from mechanical ventilation, but effects in patients with acute brain injury (ABI) are unknown. Objectives: To evaluate the association between postextubation noninvasive respiratory support and reintubation in patients with ABI being liberated from mechanical ventilation. Methods: This was a secondary analysis of a prospective, observational study of mechanically ventilated patients with ABI (clinicaltrials.gov identifier NCT03400904). The primary endpoint was reintubation during ICU admission. We used mixed-effects logistic regression models with patient-level covariates and random intercepts for hospital and country to evaluate the association between prophylactic (i.e., planned) HFNC or NIPPV and reintubation. Measurements and Main Results: 1,115 patients were included from 62 hospitals and 19 countries, of whom 267 received HFNC or NIPPV following extubation (23.9%). Compared with conventional oxygen therapy, neither prophylactic HFNC nor NIPPV was associated with decreased odds of reintubation (respectively, odds ratios of 0.97 [95% confidence interval, 0.54-1.73] and 0.63 [0.30-1.32]). Findings remained consistent in sensitivity analyses accounting for alternate adjustment procedures, missing data, shorter time frames of the primary endpoint, and competing risks precluding reintubation. In a Bayesian analysis using skeptical and data-driven priors, the probabilities of reduced reintubation ranged from 17% to 34% for HFNC and from 46% to 74% for NIPPV. Conclusions: In a large cohort of brain-injured patients undergoing liberation from mechanical ventilation, prophylactic use of HFNC and NIPPV were not associated with reintubation. Prospective trials are needed to confirm treatment effects in this population. Primary study registered with www.clinicaltrials.gov (NCT03400904).


Subject(s)
Brain Injuries , Noninvasive Ventilation , Respiratory Insufficiency , Humans , Respiration, Artificial , Airway Extubation , Bayes Theorem , Prospective Studies , Oxygen Inhalation Therapy/methods , Cannula , Brain Injuries/complications , Brain Injuries/therapy , Brain , Respiratory Insufficiency/therapy
5.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L102-L113, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36511508

ABSTRACT

Assessment of native cardiac output during extracorporeal circulation is challenging. We assessed a modified Fick principle under conditions such as dead space and shunt in 13 anesthetized swine undergoing centrally cannulated veno-arterial extracorporeal membrane oxygenation (V-A ECMO, 308 measurement periods) therapy. We assumed that the ratio of carbon dioxide elimination (V̇co2) or oxygen uptake (V̇o2) between the membrane and native lung corresponds to the ratio of respective blood flows. Unequal ventilation/perfusion (V̇/Q̇) ratios were corrected towards unity. Pulmonary blood flow was calculated and compared to an ultrasonic flow probe on the pulmonary artery with a bias of 99 mL/min (limits of agreement -542 to 741 mL/min) with blood content V̇o2 and no-shunt, no-dead space conditions, which showed good trending ability (least significant change from 82 to 129 mL). Shunt conditions led to underestimation of native pulmonary blood flow (bias -395, limits of agreement -1,290 to 500 mL/min). Bias and trending further depended on the gas (O2, CO2) and measurement approach (blood content vs. gas phase). Measurements in the gas phase increased the bias (253 [LoA -1,357 to 1,863 mL/min] for expired V̇o2 bias 482 [LoA -760 to 1,724 mL/min] for expired V̇co2) and could be improved by correction of V̇/Q̇ inequalities. Our results show that common assumptions of the Fick principle in two competing circulations give results with adequate accuracy and may offer a clinically applicable tool. Precision depends on specific conditions. This highlights the complexity of gas exchange in membrane lungs and may further deepen the understanding of V-A ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Pulmonary Gas Exchange , Animals , Swine , Pulmonary Gas Exchange/physiology , Extracorporeal Membrane Oxygenation/methods , Lung/blood supply , Cardiac Output/physiology , Pulmonary Artery , Carbon Dioxide
6.
J Infect Dis ; 225(8): 1452-1459, 2022 04 19.
Article in English | MEDLINE | ID: mdl-33668071

ABSTRACT

BACKGROUND: The optimal method for delivering phages in the context of ventilator-associated pneumonia (VAP) is unknown. In the current study, we assessed the utility of aerosolized phages (aerophages) for experimental methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. METHODS: Rats were ventilated for 4 hours before induction of pneumonia. Animals received one of the following: (1) aerophages; (2) intravenous (IV) phages; (3) a combination of IV and aerophages; (4) IV linezolid; or (5) a combination of IV linezolid and aerophages. Phages were administered at 2, 12, 24, 48, and 72 hours, and linezolid was administered at 2, 12, 24, 36, 48, 60, and 72 hours. The primary outcome was survival at 96 hours. Secondary outcomes were bacterial and phage counts in tissues and histopathological scoring of the lungs. RESULTS: Aerophages and IV phages each rescued 50% of animals from severe MRSA pneumonia (P < .01 compared with placebo controls). The combination of aerophages and IV phages rescued 91% of animals, which was higher than either monotherapy (P < .05). Standard-of-care antibiotic linezolid rescued 38% of animals. However, linezolid and aerophages did not synergize in this setting (55% survival). CONCLUSIONS: Aerosolized phage therapy showed potential for the treatment of MRSA pneumonia in an experimental animal model and warrants further investigation for application in humans.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Pneumonia, Staphylococcal , Pneumonia, Ventilator-Associated , Animals , Linezolid/therapeutic use , Pneumonia, Staphylococcal/microbiology , Pneumonia, Ventilator-Associated/drug therapy , Rats
7.
Crit Care ; 26(1): 231, 2022 07 31.
Article in English | MEDLINE | ID: mdl-35909163

ABSTRACT

BACKGROUND: Targeted temperature management at 33 °C (TTM33) has been employed in effort to mitigate brain injury in unconscious survivors of out-of-hospital cardiac arrest (OHCA). Current guidelines recommend prevention of fever, not excluding TTM33. The main objective of this study was to investigate if TTM33 is associated with mortality in patients with vasopressor support on admission after OHCA. METHODS: We performed a post hoc analysis of patients included in the TTM-2 trial, an international, multicenter trial, investigating outcomes in unconscious adult OHCA patients randomized to TTM33 versus normothermia. Patients were grouped according to level of circulatory support on admission: (1) no-vasopressor support, mean arterial blood pressure (MAP) ≥ 70 mmHg; (2) moderate-vasopressor support MAP < 70 mmHg or any dose of dopamine/dobutamine or noradrenaline/adrenaline dose ≤ 0.25 µg/kg/min; and (3) high-vasopressor support, noradrenaline/adrenaline dose > 0.25 µg/kg/min. Hazard ratios with TTM33 were calculated for all-cause 180-day mortality in these groups. RESULTS: The TTM-2 trial enrolled 1900 patients. Data on primary outcome were available for 1850 patients, with 662, 896, and 292 patients in the, no-, moderate-, or high-vasopressor support groups, respectively. Hazard ratio for 180-day mortality was 1.04 [98.3% CI 0.78-1.39] in the no-, 1.22 [98.3% CI 0.97-1.53] in the moderate-, and 0.97 [98.3% CI 0.68-1.38] in the high-vasopressor support groups with regard to TTM33. Results were consistent in an imputed, adjusted sensitivity analysis. CONCLUSIONS: In this exploratory analysis, temperature control at 33 °C after OHCA, compared to normothermia, was not associated with higher incidence of death in patients stratified according to vasopressor support on admission. Trial registration Clinical trials identifier NCT02908308 , registered September 20, 2016.


Subject(s)
Cardiopulmonary Resuscitation , Hypothermia, Induced , Out-of-Hospital Cardiac Arrest , Adult , Cardiopulmonary Resuscitation/methods , Epinephrine/therapeutic use , Humans , Hypothermia, Induced/methods , Norepinephrine/therapeutic use , Out-of-Hospital Cardiac Arrest/drug therapy , Temperature , Vasoconstrictor Agents/therapeutic use
8.
Crit Care ; 26(1): 356, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36380332

ABSTRACT

BACKGROUND: Targeted temperature management (TTM) is recommended following cardiac arrest; however, time to target temperature varies in clinical practice. We hypothesised the effects of a target temperature of 33 °C when compared to normothermia would differ based on average time to hypothermia and those patients achieving hypothermia fastest would have more favorable outcomes. METHODS: In this post-hoc analysis of the TTM-2 trial, patients after out of hospital cardiac arrest were randomized to targeted hypothermia (33 °C), followed by controlled re-warming, or normothermia with early treatment of fever (body temperature, ≥ 37.8 °C). The average temperature at 4 h (240 min) after return of spontaneous circulation (ROSC) was calculated for participating sites. Primary outcome was death from any cause at 6 months. Secondary outcome was poor functional outcome at 6 months (score of 4-6 on modified Rankin scale). RESULTS: A total of 1592 participants were evaluated for the primary outcome. We found no evidence of heterogeneity of intervention effect based on the average time to target temperature on mortality (p = 0.17). Of patients allocated to hypothermia at the fastest sites, 71 of 145 (49%) had died compared to 68 of 148 (46%) of the normothermia group (relative risk with hypothermia, 1.07; 95% confidence interval 0.84-1.36). Poor functional outcome was reported in 74/144 (51%) patients in the hypothermia group, and 75/147 (51%) patients in the normothermia group (relative risk with hypothermia 1.01 (95% CI 0.80-1.26). CONCLUSIONS: Using a hospital's average time to hypothermia did not significantly alter the effect of TTM of 33 °C compared to normothermia and early treatment of fever.


Subject(s)
Cardiopulmonary Resuscitation , Hypothermia, Induced , Hypothermia , Out-of-Hospital Cardiac Arrest , Humans , Out-of-Hospital Cardiac Arrest/therapy , Cold Temperature , Fever/therapy , Treatment Outcome
9.
J Transl Med ; 19(1): 36, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33468154

ABSTRACT

BACKGROUND: The functional residual capacity (FRC) determines the oxygenating capacity of the lung and is heavily affected in the clinical context of the acute respiratory distress syndrome. Nitrogen-wash-in/wash-out methods have been used to measure FRC. These methods have rarely been validated against exactly known volumes. The aim of the study was to assess the accuracy and precision of the N2 washout/washin method in measuring FRC, by comparing it with set volumes in a lung simulator. METHODS: We conducted a diagnostic bench study in the Intensive Care Unit and Radiology Department of a tertiary hospital in Switzerland. Using a fully controllable high fidelity lung simulator (TestChest®), we set the functional residual capacity at 1500 ml, 2000 ml and 2500 ml and connected to the GE Carestation respirator, which includes the nitrogen washout/washin technique (INview™ tool). FRC was then set to vary by different levels of PEEP (5, 8, 12 and 15 cmH2O). The main outcome measures were bias and precision of the TestChest® when compared to the results from the washout/washin technique, according to the results of a Bland Altman Analysis. We verified our findings with volumetric computed tomography. RESULTS: One hundred and thirty-five nitrogen-wash-in/wash-out measurements were taken at three levels of FIO2 (0.4, 0.5, 0.6). The CT volumetry reproduced the set end-expiratory volumes at the Simulator with a bias of 4 ml. The nitrogen-wash-in/wash-out method had a bias of 603 ml with acceptable limits of agreement (95% CI 252 to - 953 ml). Changes were detected with a concordance rate of 97%. CONCLUSIONS: We conclude that the TestChest® simulator is an accurate simulation tool, concerning the simulation of lung volumes. The nitrogen wash-in/wash out method correlated positively with FRC changes, despite a relatively large bias in absolute measurements. The reference volumes in the lung simulator verified with CT volumetry were very close to their expected values. The reason for the bias could not be determined.


Subject(s)
Positive-Pressure Respiration , Respiratory Distress Syndrome , Functional Residual Capacity , Humans , Lung Volume Measurements , Nitrogen
10.
Neurocrit Care ; 35(1): 197-209, 2021 08.
Article in English | MEDLINE | ID: mdl-33326065

ABSTRACT

BACKGROUND/OBJECTIVE: In order to monitor tissue oxygenation in patients with acute neurological disorders, probes for measurement of brain tissue oxygen tension (ptO2) are often placed non-specifically in a right frontal lobe location. To improve the value of ptO2 monitoring, placement of the probe into a specific area of interest is desirable. We present a technique using CT-guidance to place the ptO2 probe in a particular area of interest based on the individual patient's pathology. METHODS: In this retrospective cohort study, we analyzed imaging and clinical data from all patients who underwent CT-guided ptO2 probe placement at our institution between October 2017 and April 2019. Primary endpoint was successful placement of the probe in a particular area of interest rated by two independent reviewers. Secondary outcomes were complications from probe insertion, clinical consequences from ptO2 measurements, clinical outcome according to the modified Rankin Scale (mRS) as well as development of ischemia on follow-up imaging. A historical control group was selected from patients who underwent conventional ptO2 probe placement between January 2010 and October 2017. RESULTS: Eleven patients had 16 CT-guided probes inserted. In 15 (93.75%) probes, both raters agreed on the correct placement in the area of interest. Each probe triggered on average 0.48 diagnostic or therapeutic adjustments per day. Only one infarction within the vascular territory of a probe was found on follow-up imaging. Eight out of eleven patients (72.73%) reached a good outcome (mRS ≤ 3). In comparison, conventionally placed probes triggered less diagnostic and therapeutic adjustment per day (p = 0.007). Outcome was worse in the control group (p = 0.024). CONCLUSION: CT-guided probe insertion is a reliable and easy technique to place a ptO2 probe in a particular area of interest in patients with potentially reduced cerebral oxygen supply. By adjusting treatment aggressively according to this individualized monitoring data, clinical outcome may improve.


Subject(s)
Brain , Oxygen , Brain/diagnostic imaging , Humans , Microsurgery , Monitoring, Physiologic , Retrospective Studies
11.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1211-L1221, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32294391

ABSTRACT

Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is used as rescue therapy for severe cardiopulmonary failure. We tested whether the ratio of CO2 elimination at the lung and the V-A ECMO (V˙co2ECMO/V˙co2Lung) would reflect the ratio of respective blood flows and could be used to estimate changes in pulmonary blood flow (Q˙Lung), i.e., native cardiac output. Four healthy pigs were centrally cannulated for V-A ECMO. We measured blood flows with an ultrasonic flow probe. V˙co2ECMO and V˙co2Lung were calculated from sidestream capnographs under constant pulmonary ventilation during V-A ECMO weaning with changing sweep gas and/or V-A ECMO blood flow. If ventilation-to-perfusion ratio (V˙/Q˙) of V-A ECMO was not 1, the V˙co2ECMO was normalized to V˙/Q˙ = 1 (V˙co2ECMONorm). Changes in pulmonary blood flow were calculated using the relationship between changes in CO2 elimination and V-A ECMO blood flow (Q˙ECMO). Q˙ECMO correlated strongly with V˙co2ECMONorm (r2 0.95-0.99). Q˙Lung correlated well with V˙co2Lung (r2 0.65-0.89, P < = 0.002). Absolute Q˙Lung could not be calculated in a nonsteady state. Calculated pulmonary blood flow changes had a bias of 76 (-266 to 418) mL/min and correlated with measured Q˙Lung (r2 0.974-1.000, P = 0.1 to 0.006) for cumulative ECMO flow reductions. In conclusion, V˙co2 of the lung correlated strongly with pulmonary blood flow. Our model could predict pulmonary blood flow changes within clinically acceptable margins of error. The prediction is made possible with normalization to a V˙/Q˙ of 1 for ECMO. This approach depends on measurements readily available and may allow immediate assessment of the cardiac output response.


Subject(s)
Extracorporeal Membrane Oxygenation , Lung/blood supply , Pulmonary Artery/physiology , Pulmonary Gas Exchange/physiology , Pulmonary Veins/physiology , Regional Blood Flow/physiology , Animals , Disease Models, Animal , Female , Male , Swine
12.
Crit Care Med ; 48(7): 1042-1046, 2020 07.
Article in English | MEDLINE | ID: mdl-32304419

ABSTRACT

OBJECTIVES: There is a need for alternative strategies to combat and prevent antibiotic-resistant bacterial infections. Here, we assessed the potential for bacteriophage prophylaxis in the context of experimental ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus in rats. DESIGN: Nebulized phages (aerophages) were delivered to the lungs of rats using a modified vibrating mesh aerosol drug delivery system. Animals were intubated and ventilated for 4 hours, at which point they were infected with methicillin-resistant S. aureus strain AW7 via the endotracheal tube, extubated, and then monitored for 96 hours. SETTING: Ventilator-associated pneumonia. SUBJECTS: Male Wistar rats. INTERVENTIONS: A single application of aerophages prior to ventilation at one of two concentrations (~1010 plaque forming units/mL or ~1011 plaque forming units/mL). MEASUREMENTS AND MAIN RESULTS: 1) Animal survival at 96 hours, 2) enumeration of bacteria and phages in the lungs and spleen, and 3) lung tissue histopathology. Animals that received aerophages prior to ventilation and methicillin-resistant S. aureus challenge showed a higher survival rate compared with untreated controls (60% for animals that received 3 × 10 plaque forming units; 70% for animals that received 3 × 10 plaque forming units; 0% for controls; p < 0.01 for each treatment versus untreated). Surviving animals that received aerophage prophylaxis had fewer methicillin-resistant S. aureus in the lungs compared with untreated control animals that succumbed to pneumonia (1.6 × 10 colony forming units/g vs 8.0 × 10; p < 0.01). CONCLUSIONS: Prophylactically administered nebulized bacteriophages reduced lung bacterial burdens and improved survival of methicillin-resistant S. aureus infected rats, underscoring its potential in the context of ventilator-associated pneumonia.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Phage Therapy/methods , Pneumonia, Staphylococcal/prevention & control , Pneumonia, Ventilator-Associated/prevention & control , Aerosols , Animals , Male , Nebulizers and Vaporizers/virology , Rats , Rats, Wistar
13.
Anesthesiology ; 133(4): 879-891, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32657798

ABSTRACT

BACKGROUND: Veno-arterial extracorporeal membrane oxygenation therapy is a growing treatment modality for acute cardiorespiratory failure. Cardiac output monitoring during veno-arterial extracorporeal membrane oxygenation therapy remains challenging. This study aims to validate a new thermodilution technique during veno-arterial extracorporeal membrane oxygenation therapy using a pig model. METHODS: Sixteen healthy pigs were centrally cannulated for veno-arterial extracorporeal membrane oxygenation, and precision flow probes for blood flow assessment were placed on the pulmonary artery. After chest closure, cold boluses of 0.9% saline solution were injected into the extracorporeal membrane oxygenation circuit, right atrium, and right ventricle at different extracorporeal membrane oxygenation flows (4, 3, 2, 1 l/min). Rapid response thermistors in the extracorporeal membrane oxygenation circuit and pulmonary artery recorded the temperature change. After calculating catheter constants, the distributions of injection volumes passing each circuit were assessed and enabled calculation of pulmonary blood flow. Analysis of the exponential temperature decay allowed assessment of right ventricular function. RESULTS: Calculated blood flow correlated well with measured blood flow (r2 = 0.74, P < 0.001). Bias was -6 ml/min [95% CI ± 48 ml/min] with clinically acceptable limits of agreement (668 ml/min [95% CI ± 166 ml/min]). Percentage error varied with extracorporeal membrane oxygenation blood flow reductions, yielding an overall percentage error of 32.1% and a percentage error of 24.3% at low extracorporeal membrane oxygenation blood flows. Right ventricular ejection fraction was 17 [14 to 20.0]%. Extracorporeal membrane oxygenation flow reductions increased end-diastolic and end-systolic volumes with reductions in pulmonary vascular resistance. Central venous pressure and right ventricular ejection fractions remained unchanged. End-diastolic and end-systolic volumes correlated highly (r2 = 0.98, P < 0.001). CONCLUSIONS: Adapted thermodilution allows reliable assessment of cardiac output and right ventricular behavior. During veno-arterial extracorporeal membrane oxygenation weaning, the right ventricle dilates even with stable function, possibly because of increased venous return.


Subject(s)
Blood Flow Velocity/physiology , Extracorporeal Membrane Oxygenation/methods , Models, Animal , Thermodilution/methods , Ventricular Function, Right/physiology , Animals , Female , Lung/blood supply , Lung/physiology , Male , Swine
14.
Crit Care ; 24(1): 680, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33287874

ABSTRACT

BACKGROUND: Early prognostication in patients with acute consciousness impairment is a challenging but essential task. Current prognostic guidelines vary with the underlying etiology. In particular, electroencephalography (EEG) is the most important paraclinical examination tool in patients with hypoxic ischemic encephalopathy (HIE), whereas it is not routinely used for outcome prediction in patients with traumatic brain injury (TBI). METHOD: Data from 364 critically ill patients with acute consciousness impairment (GCS ≤ 11 or FOUR ≤ 12) of various etiologies and without recent signs of seizures from a prospective randomized trial were retrospectively analyzed. Random forest classifiers were trained using 8 visual EEG features-first alone, then in combination with clinical features-to predict survival at 6 months or favorable functional outcome (defined as cerebral performance category 1-2). RESULTS: The area under the ROC curve was 0.812 for predicting survival and 0.790 for predicting favorable outcome using EEG features. Adding clinical features did not improve the overall performance of the classifier (for survival: AUC = 0.806, p = 0.926; for favorable outcome: AUC = 0.777, p = 0.844). Survival could be predicted in all etiology groups: the AUC was 0.958 for patients with HIE, 0.955 for patients with TBI and other neurosurgical diagnoses, 0.697 for patients with metabolic, inflammatory or infectious causes for consciousness impairment and 0.695 for patients with stroke. Training the classifier separately on subgroups of patients with a given etiology (and thus using less training data) leads to poorer classification performance. CONCLUSIONS: While prognostication was best for patients with HIE and TBI, our study demonstrates that similar EEG criteria can be used in patients with various causes of consciousness impairment, and that the size of the training set is more important than homogeneity of ACI etiology.


Subject(s)
Consciousness Disorders/etiology , Electroencephalography/methods , Predictive Value of Tests , Adult , Area Under Curve , Electroencephalography/trends , Female , Humans , Male , Middle Aged , Outcome Assessment, Health Care/methods , Prognosis , Prospective Studies , ROC Curve , Retrospective Studies , Switzerland
15.
Am J Respir Crit Care Med ; 200(9): 1126-1133, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31260638

ABSTRACT

Rationale: Infections caused by multidrug-resistant bacteria are a major clinical challenge. Phage therapy is a promising alternative antibacterial strategy.Objectives: To evaluate the efficacy of intravenous phage therapy for the treatment of ventilator-associated pneumonia due to methicillin-resistant Staphylococcus aureus in rats.Methods: In a randomized, blinded, controlled experimental study, we compared intravenous teicoplanin (3 mg/kg, n = 12), a cocktail of four phages (2-3 × 109 plaque-forming units/ml of 2003, 2002, 3A, and K; n = 12), and a combination of both (n = 11) given 2, 12, and 24 hours after induction of pneumonia, and then once daily for 4 days. The primary outcome was survival at Day 4. Secondary outcomes were bacterial and phage densities in lungs and spleen, histopathological scoring of infection within the lungs, and inflammatory biomarkers in blood.Measurements and Main Results: Treatment with either phages or teicoplanin increased survival from 0% to 58% and 50%, respectively (P < 0.005). The combination of phages and antibiotics did not further improve outcomes (45% survival). Animal survival correlated with reduced bacterial burdens in the lung (1.2 × 106 cfu/g of tissue for survivors vs. 1.2 × 109 cfu/g for nonsurviving animals; P < 0.0001), as well as improved histopathological outcomes. Phage multiplication within the lung occurred during treatment. IL-1ß increased in all treatment groups over the course of therapy.Conclusions: Phage therapy was as effective as teicoplanin in improving survival and decreasing bacterial load within the lungs of rats infected with methicillin-resistant S. aureus. Combining antibiotics with phage therapy did not further improve outcomes.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Phage Therapy , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/therapy , Staphylococcal Infections/therapy , Animals , Anti-Bacterial Agents/therapeutic use , Bacteriophages , Disease Models, Animal , Male , Rats , Rats, Wistar , Staphylococcal Infections/microbiology , Teicoplanin/therapeutic use
16.
Neurocrit Care ; 28(3): 370-378, 2018 06.
Article in English | MEDLINE | ID: mdl-28875429

ABSTRACT

BACKGROUND: Cardiac arrest is an important cause of morbidity and mortality. Brain injury severity and prognosis of cardiac arrest patients are related to the cerebral areas affected. To this aim, we evaluated the variability and the distribution of brain glucose metabolism after cardiac arrest and resuscitation in an adult rat model. METHODS: Ten rats underwent 8-min cardiac arrest, induced with a mixture of potassium and esmolol, and resuscitation, performed with chest compressions and epinephrine. Eight sham animals received anesthesia and experimental procedures identical to the ischemic group except cardiac arrest induction. Brain metabolism was assessed using [18F]FDG autoradiography and small animal-dedicated positron emission tomography. RESULTS: The absolute glucose metabolism measured with [18F]FDG autoradiography 2 h after cardiac arrest and resuscitation was lower in the frontal, parietal, occipital, and temporal cortices of cardiac arrest animals, showing, respectively, a 36% (p = 0.006), 32% (p = 0.016), 36% (p = 0.009), and 32% (p = 0.013) decrease compared to sham group. Striatum, hippocampus, thalamus, brainstem, and cerebellum showed no significant changes. Relative regional metabolism indicated a redistribution of metabolism from cortical area to brainstem and cerebellum. CONCLUSIONS: Our data suggest that cerebral regions have different susceptibility to moderate global ischemia in terms of glucose metabolism. The neocortex showed a higher sensibility to hypoxia-ischemia than other regions. Other subcortical regions, in particular brainstem and cerebellum, showed no significant change compared to non-ischemic rats.


Subject(s)
Cardiopulmonary Resuscitation/methods , Heart Arrest/therapy , Hypoxia-Ischemia, Brain/metabolism , Neocortex/metabolism , Animals , Autoradiography , Disease Models, Animal , Fluorodeoxyglucose F18 , Hypoxia-Ischemia, Brain/diagnostic imaging , Male , Neocortex/diagnostic imaging , Positron-Emission Tomography , Rats
17.
Am J Physiol Heart Circ Physiol ; 311(3): H794-806, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27422991

ABSTRACT

According to Guyton's model of circulation, mean systemic filling pressure (MSFP), right atrial pressure (RAP), and resistance to venous return (RVR) determine venous return. MSFP has been estimated from inspiratory hold-induced changes in RAP and blood flow. We studied the effect of positive end-expiratory pressure (PEEP) and blood volume on venous return and MSFP in pigs. MSFP was measured by balloon occlusion of the right atrium (MSFPRAO), and the MSFP obtained via extrapolation of pressure-flow relationships with airway occlusion (MSFPinsp_hold) was extrapolated from RAP/pulmonary artery flow (QPA) relationships during inspiratory holds at PEEP 5 and 10 cmH2O, after bleeding, and in hypervolemia. MSFPRAO increased with PEEP [PEEP 5, 12.9 (SD 2.5) mmHg; PEEP 10, 14.0 (SD 2.6) mmHg, P = 0.002] without change in QPA [2.75 (SD 0.43) vs. 2.56 (SD 0.45) l/min, P = 0.094]. MSFPRAO decreased after bleeding and increased in hypervolemia [10.8 (SD 2.2) and 16.4 (SD 3.0) mmHg, respectively, P < 0.001], with parallel changes in QPA Neither PEEP nor volume state altered RVR (P = 0.489). MSFPinsp_hold overestimated MSFPRAO [16.5 (SD 5.8) vs. 13.6 (SD 3.2) mmHg, P = 0.001; mean difference 3.0 (SD 5.1) mmHg]. Inspiratory holds shifted the RAP/QPA relationship rightward in euvolemia because inferior vena cava flow (QIVC) recovered early after an inspiratory hold nadir. The QIVC nadir was lowest after bleeding [36% (SD 24%) of preinspiratory hold at 15 cmH2O inspiratory pressure], and the QIVC recovery was most complete at the lowest inspiratory pressures independent of volume state [range from 80% (SD 7%) after bleeding to 103% (SD 8%) at PEEP 10 cmH2O of QIVC before inspiratory hold]. The QIVC recovery thus defends venous return, possibly via hepatosplanchnic vascular waterfall.


Subject(s)
Atrial Function, Right , Blood Volume/physiology , Breath Holding , Hypovolemia/physiopathology , Positive-Pressure Respiration , Vena Cava, Inferior/physiology , Animals , Blood Pressure , Cardiac Output/physiology , Heart Atria , Male , Pressure , Sus scrofa , Swine
18.
BMC Neurol ; 16: 43, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27044425

ABSTRACT

BACKGROUND: The noble gas xenon is considered as a neuroprotective agent, but availability of the gas is limited. Studies on neuroprotection with the abundant noble gases helium and argon demonstrated mixed results, and data regarding neuroprotection after cardiac arrest are scant. We tested the hypothesis that administration of 50% helium or 50% argon for 24 h after resuscitation from cardiac arrest improves clinical and histological outcome in our 8 min rat cardiac arrest model. METHODS: Forty animals had cardiac arrest induced with intravenous potassium/esmolol and were randomized to post-resuscitation ventilation with either helium/oxygen, argon/oxygen or air/oxygen for 24 h. Eight additional animals without cardiac arrest served as reference, these animals were not randomized and not included into the statistical analysis. Primary outcome was assessment of neuronal damage in histology of the region I of hippocampus proper (CA1) from those animals surviving until day 5. Secondary outcome was evaluation of neurobehavior by daily testing of a Neurodeficit Score (NDS), the Tape Removal Test (TRT), a simple vertical pole test (VPT) and the Open Field Test (OFT). Because of the non-parametric distribution of the data, the histological assessments were compared with the Kruskal-Wallis test. Treatment effect in repeated measured assessments was estimated with a linear regression with clustered robust standard errors (SE), where normality is less important. RESULTS: Twenty-nine out of 40 rats survived until day 5 with significant initial deficits in neurobehavioral, but rapid improvement within all groups randomized to cardiac arrest. There were no statistical significant differences between groups neither in the histological nor in neurobehavioral assessment. CONCLUSIONS: The replacement of air with either helium or argon in a 50:50 air/oxygen mixture for 24 h did not improve histological or clinical outcome in rats subjected to 8 min of cardiac arrest.


Subject(s)
Argon/administration & dosage , Heart Arrest/complications , Helium/administration & dosage , Neuroprotective Agents/pharmacology , Animals , Hippocampus/pathology , Male , Neuroprotection/drug effects , Noble Gases/administration & dosage , Oxygen/administration & dosage , Rats , Rats, Wistar
19.
BMC Anesthesiol ; 15: 2, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25972075

ABSTRACT

BACKGROUND: Different anesthesia regimes are commonly used in experimental models of cardiac arrest, but the effects of various anesthetics on clinical outcome parameters are unknown. We conducted a study in which we subjected rats to cardiac arrest under medetomidine/ketamine or sevoflurane/fentanyl anesthesia. METHODS: Asystolic cardiac arrest for 8 minutes was induced in 73 rats with a mixture of potassium chloride and esmolol. Daily behavioral and neurological examination included the open field test (OFT), the tape removal test (TRT) and a neurodeficit score (NDS). Animals were randomized for sacrifice on day 2 or day 5 and brains were harvested for histology in the hippocampus cornus ammonis segment CA1. The inflammatory markers IL-6, TNF-α, MCP-1 and MIP-1α were assessed in cerebrospinal fluid (CSF). Proportions of survival were tested with the Fisher's exact test, repeated measurements were assessed with the Friedman's test; the baseline values were tested using Mann-Whitney U test and the difference of results of repeated measures were compared. RESULTS: In 31 animals that survived beyond 24 hours neither OFT, TRT nor NDS differed between the groups; histology was similar on day 2. On day 5, significantly more apoptosis in the CA1 segment of the hippocampus was found in the sevoflurane/fentanyl group. MCP-1 was higher on day 5 in the sevoflurane/fentanyl group (p = 0.04). All other cyto- and chemokines were below detection threshold. CONCLUSION: In our cardiac arrest model neurological function was not influenced by different anesthetic regimes; in contrast, anesthesia with sevoflurane/fentanyl results in increased CSF inflammation and histologic damage at day 5 post cardiac arrest.


Subject(s)
Anesthetics/pharmacology , Heart Arrest/physiopathology , Nervous System Diseases/prevention & control , Animals , Apoptosis/drug effects , Fentanyl/pharmacology , Hippocampus/drug effects , Ketamine/pharmacology , Male , Medetomidine/pharmacology , Methyl Ethers/pharmacology , Rats, Wistar , Sevoflurane
20.
Intensive Care Med Exp ; 12(1): 19, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407669

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a form of respiratory failure stemming from various underlying conditions that ultimately lead to inflammation and lung fibrosis. Bromodomain and Extra-Terminal motif (BET) inhibitors are a class of medications that selectively bind to the bromodomains of BET motif proteins, effectively reducing inflammation. However, the use of BET inhibitors in ARDS treatment has not been previously investigated. In our study, we induced ARDS in rats using endotoxin and administered a BET inhibitor. We evaluated the outcomes by examining inflammation markers and lung histopathology. RESULTS: Nine animals received treatment, while 12 served as controls. In the lung tissue of treated animals, we observed a significant reduction in TNFα levels (549 [149-977] pg/mg vs. 3010 [396-5529] pg/mg; p = 0.009) and IL-1ß levels (447 [369-580] pg/mg vs. 662 [523-924] pg/mg; p = 0.012), although IL-6 and IL-10 levels showed no significant differences. In the blood, treated animals exhibited a reduced TNFα level (25 [25-424] pg/ml vs. 900 [285-1744] pg/ml, p = 0.016), but IL-1ß levels were significantly higher (1254 [435-2474] pg/ml vs. 384 [213-907] pg/ml, p = 0.049). No differences were observed in IL-6 and IL-10 levels. There were no significant variations in lung tissue levels of TGF-ß, SP-D, or RAGE. Histopathological analysis revealed substantial damage, with notably less perivascular edema (3 vs 2; p = 0.0046) and visually more inflammatory cells. However, two semi-quantitative histopathologic scoring systems did not indicate significant differences. CONCLUSIONS: These preliminary findings suggest a potential beneficial effect of BET inhibitors in the treatment of acute lung injury and ARDS. Further validation and replication of these results with a larger cohort of animals, in diverse models, and using different BET inhibitors are needed to explore their clinical implications.

SELECTION OF CITATIONS
SEARCH DETAIL