Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Proc Natl Acad Sci U S A ; 120(18): e2216342120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098070

ABSTRACT

NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.


Subject(s)
Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily K , Ligands , CD8-Positive T-Lymphocytes , Protein Binding
2.
Int J Toxicol ; 32(5): 336-50, 2013.
Article in English | MEDLINE | ID: mdl-24097127

ABSTRACT

Dapagliflozin, a first-in-class, selective inhibitor of sodium-glucose cotransporter 2 (SGLT2), promotes urinary glucose excretion to reduce hyperglycemia for the treatment of type 2 diabetes. A series of nonclinical studies were undertaken to evaluate dapagliflozin in species where it was shown to have pharmacologic activity comparable with that in humans at doses that resulted in supratherapeutic exposures. In vitro screening (>300 targets; 10 µmol/L) indicated no significant off-target activities for dapagliflozin or its primary human metabolite. Once daily, orally administered dapagliflozin was evaluated in Sprague-Dawley rats (≤6 months) and in beagle dogs (≤1 year) at exposures >5000-fold those observed at the maximum recommended human clinical dose (MRHD; 10 mg). Anticipated, pharmacologically mediated effects of glucosuria, osmotic diuresis, and mild electrolyte loss were observed, but there were no adverse effects at clinically relevant exposures, including in the kidneys or urogenital tract. The SGLT2-/- mice, which show chronic glucosuria, and dapagliflozin-treated, wild-type mice exhibited similar safety profiles. In rats but not dogs, dapagliflozin at >2000-fold MRHD exposures resulted in tissue mineralization and trabecular bone accretion. Investigative studies suggested that the effect was not relevant to human safety, since it was partially related to off-target inhibition of SGLT1, which was observed only at high doses of dapagliflozin and resulted in intestinal glucose malabsorption and increased intestinal calcium absorption. The rigorous assessment of supra- and off-target dapagliflozin pharmacology in nonclinical species allowed for a thorough evaluation of potential toxicity, providing us with confidence in its safety in patients with diabetes.


Subject(s)
Glucosides/toxicity , Hypoglycemic Agents/toxicity , Sodium-Glucose Transporter 2 Inhibitors , Animals , Benzhydryl Compounds , CHO Cells , Cricetulus , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Female , Glucosides/administration & dosage , Glucosides/pharmacokinetics , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Male , Mice , Mice, Inbred ICR , Mice, Knockout , Rats , Rats, Sprague-Dawley , Sodium-Glucose Transporter 2/genetics
3.
J Med Chem ; 51(5): 1145-9, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18260618

ABSTRACT

The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucosides/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Kidney/metabolism , Sodium-Glucose Transporter 2 Inhibitors , Administration, Oral , Animals , Benzhydryl Compounds , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Glucosides/chemistry , Glucosides/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Rats , Sodium-Glucose Transporter 2 , Stereoisomerism
4.
Bioorg Med Chem Lett ; 18(17): 4770-3, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18707880

ABSTRACT

Inhibition of sodium-dependent glucose transporter 2 (SGLT2), the transporter that is responsible for renal re-uptake of glucose, leads to glucosuria in animals. SGLT-mediated glucosuria provides a mechanism to shed excess plasma glucose to ameliorate diabetes-related hyperglycemia and associated complications. The current study demonstrates that the proper relationship of a 4'-substituted benzyl group to a beta-1C-phenylglucoside is important for potent and selective SGLT2 inhibition. The lead C-arylglucoside (7a) demonstrates superior metabolic stability to its O-arylglucoside counterpart (4) and it promotes glucosuria when administered in vivo.


Subject(s)
Glucosides/chemistry , Glucosides/pharmacology , Sodium-Glucose Transporter 2 Inhibitors , Animals , Glucose/chemistry , Glycosuria, Renal/drug therapy , Humans , Kidney/drug effects , Rats , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2
5.
Hum Gene Ther Methods ; 27(6): 228-237, 2016 12.
Article in English | MEDLINE | ID: mdl-27903094

ABSTRACT

Numerous methods of vector design and delivery have been employed in an attempt to increase transgene expression following AAV-based gene therapy. Here, a gene transfer study was conducted in mice to compare the effects of vector self-complementarity (double- or single-stranded DNA), codon optimization of the transgene, and vector dose on transgene expression levels in the liver. Two different reporter genes were used: human ornithine transcarbamylase (hOTC) detected by immunofluorescence, and enhanced green fluorescent protein (EGFP) detected by direct fluorescence. The AAV8 capsid was chosen for all experiments due to its strong liver tropism. While EGFP is already a codon-optimized version of the original gene, both wild-type (WT) and codon-optimized (co) versions of the hOTC transgene were compared in this study. In addition, the study evaluated which of the two hOTC modifications-codon optimization or self-complementarity-would confer the highest increase in expression levels at a given dose. Interestingly, based on morphometric image analysis, it was observed that the difference in detectable expression levels between self-complementary (sc) and single-stranded (ss) hOTCco vectors was dose dependent, with a sevenfold increase in OTC-positive area using sc vectors at a dose of 3 × 109 genome copies (GC) per mouse, but no significant difference at a dose of 1 × 1010 GC/mouse. In contrast, with EGFP as a transgene, the increases in expression levels when using the sc vector were observed at both the 3 × 109 GC/mouse and 1 × 1010 GC/mouse doses. Furthermore, codon optimization of the hOTC transgene generated a more significant improvement in expression than the use of self-complementarity did. Overall, the results demonstrate that increases in expression levels gained by using sc vectors instead of ss vectors can vary between different transgenes, and that codon optimization of the transgene can have an even more powerful effect on the resulting expression levels.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors/genetics , Transduction, Genetic , Animals , Codon , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/therapeutic use , Humans , Liver/metabolism , Mice , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/therapeutic use
6.
Diabetes Ther ; 1(2): 57-92, 2010 Dec.
Article in English | MEDLINE | ID: mdl-22127746

ABSTRACT

SGLT2 (for "Sodium GLucose coTransporter" protein 2) is the major protein responsible for glucose reabsorption in the kidney and its inhibition has been the focus of drug discovery efforts to treat type 2 diabetes. In order to better clarify the human tissue distribution of expression of SGLT2 and related members of this cotransporter class, we performed TaqMan™ (Applied Biosystems, Foster City, CA, USA) quantitative polymerase chain reaction (PCR) analysis of SGLT2 and other sodium/glucose transporter genes on RNAs from 72 normal tissues from three different individuals. We consistently observe that SGLT2 is highly kidney specific while SGLT5 is highly kidney abundant; SGLT1, sodium-dependent amino acid transporter (SAAT1), and SGLT4 are highly abundant in small intestine and skeletal muscle; SGLT6 is expressed in the central nervous system; and sodium myoinositol cotransporter is ubiquitously expressed across all human tissues.

7.
Diabetes ; 57(6): 1723-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18356408

ABSTRACT

OBJECTIVE: The inhibition of gut and renal sodium-glucose cotransporters (SGLTs) has been proposed as a novel therapeutic approach to the treatment of diabetes. We have identified dapagliflozin as a potent and selective inhibitor of the renal sodium-glucose cotransporter SGLT2 in vitro and characterized its in vitro and in vivo pharmacology. RESEARCH DESIGN AND METHODS: Cell-based assays measuring glucose analog uptake were used to assess dapagliflozin's ability to inhibit sodium-dependent and facilitative glucose transport activity. Acute and multi-dose studies in normal and diabetic rats were performed to assess the ability of dapagliflozin to improve fed and fasting plasma glucose levels. A hyperinsulinemic-euglycemic clamp study was performed to assess the ability of dapagliflozin to improve glucose utilization after multi-dose treatment. RESULTS: Dapagliflozin potently and selectively inhibited human SGLT2 versus human SGLT1, the major cotransporter of glucose in the gut, and did not significantly inhibit facilitative glucose transport in human adipocytes. In vivo, dapagliflozin acutely induced renal glucose excretion in normal and diabetic rats, improved glucose tolerance in normal rats, and reduced hyperglycemia in Zucker diabetic fatty (ZDF) rats after single oral doses ranging from 0.1 to 1.0 mg/kg. Once-daily dapagliflozin treatment over 2 weeks significantly lowered fasting and fed glucose levels at doses ranging from 0.1 to 1.0 mg/kg and resulted in a significant increase in glucose utilization rate accompanied by a significant reduction in glucose production. CONCLUSIONS: These data suggest that dapagliflozin has the potential to be an efficacious treatment for type 2 diabetes.


Subject(s)
Blood Glucose/metabolism , Glucosides/therapeutic use , Sodium-Glucose Transport Proteins/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Benzhydryl Compounds , Blood Glucose/drug effects , Cell Line , Cloning, Molecular , Glucose/metabolism , Humans , Rats , Rats, Zucker , Reference Values , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL