Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Blood ; 137(15): 2057-2069, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33067607

ABSTRACT

Cancer and normal cells use multiple antiapoptotic BCL2 proteins to prevent cell death. Therapeutic targeting of multiple BCL2 family proteins enhances tumor killing but is also associated with increased systemic toxicity. Here, we demonstrate that the dual targeting of MCL1 and BCL2 proteins using the small molecules S63845 and venetoclax induces durable remissions in mice that harbor human diffuse large B-cell lymphoma (DLBCL) tumors but is accompanied by hematologic toxicity and weight loss. To mitigate these toxicities, we encapsulated S63845 or venetoclax into nanoparticles that target P-selectin, which is enriched in tumor endothelial cells. In vivo and ex vivo imaging demonstrated preferential targeting of the nanoparticles to lymphoma tumors over vital organs. Mass spectrometry analyses after administration of nanoparticle drugs confirmed tumor enrichment of the drug while reducing plasma levels. Furthermore, nanoparticle encapsulation allowed 3.5- to 6.5-fold reduction in drug dose, induced sustained remissions, and minimized toxicity. Our results support the development of nanoparticles to deliver BH3 mimetic combinations in lymphoma and in general for toxic drugs in cancer therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Lymphoma, Large B-Cell, Diffuse/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrimidines/administration & dosage , Sulfonamides/administration & dosage , Thiophenes/administration & dosage , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cell Line, Tumor , Drug Carriers/chemistry , Drug Delivery Systems , Female , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Nanoparticles/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyrimidines/adverse effects , Pyrimidines/therapeutic use , Sulfonamides/adverse effects , Sulfonamides/therapeutic use , Therapeutic Index , Thiophenes/adverse effects , Thiophenes/therapeutic use
2.
Cancer Res Commun ; 3(9): 1788-1799, 2023 09.
Article in English | MEDLINE | ID: mdl-37691854

ABSTRACT

The FOXA1 pioneer factor is an essential mediator of steroid receptor function in multiple hormone-dependent cancers, including breast and prostate cancers, enabling nuclear receptors such as estrogen receptor (ER) and androgen receptor (AR) to activate lineage-specific growth programs. FOXA1 is also highly expressed in non-small cell lung cancer (NSCLC), but whether and how it regulates tumor growth in this context is not known. Analyzing data from loss-of-function screens, we identified a subset of NSCLC tumor lines where proliferation is FOXA1 dependent. Using rapid immunoprecipitation and mass spectrometry of endogenous protein, we identified chromatin-localized interactions between FOXA1 and glucocorticoid receptor (GR) in these tumor cells. Knockdown of GR inhibited proliferation of FOXA1-dependent, but not FOXA1-independent NSCLC cells. In these FOXA1-dependent models, FOXA1 and GR cooperate to regulate gene targets involved in EGF signaling and G1-S cell-cycle progression. To investigate the therapeutic potential for targeting this complex, we examined the effects of highly selective inhibitors of the GR ligand-binding pocket and found that GR antagonism with ORIC-101 suppressed FOXA1/GR target expression, activation of EGF signaling, entry into the S-phase, and attendant proliferation in vitro and in vivo. Taken together, our findings point to a subset of NSCLCs harboring a dependence on the FOXA1/GR growth program and provide rationale for its therapeutic targeting. Significance: NSCLC is the leading cause of cancer deaths worldwide. There is a need to identify novel druggable dependencies. We identify a subset of NSCLCs dependent on FOXA1-GR and sensitive to GR antagonism.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Hepatocyte Nuclear Factor 3-alpha , Lung Neoplasms , Receptors, Glucocorticoid , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Epidermal Growth Factor , Lung Neoplasms/drug therapy , Receptors, Glucocorticoid/genetics , Hepatocyte Nuclear Factor 3-alpha/genetics
3.
Vaccines (Basel) ; 8(1)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121277

ABSTRACT

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) viruses are a major cause of disease and economic loss in pigs worldwide. High genetic diversity among PRRSV strains is problematic for successful disease control by vaccination. Mosaic DNA and vaccinia (VACV) vaccines were developed in order to improve protection against heterologous PRRSV strains. METHODS: Piglets were primed and boosted with GP5-Mosaic DNA vaccine and recombinant GP5-Mosaic VACV (rGP5-Mosaic VACV), respectively. Pigs vaccinated with rGP5-WT (VR2332) DNA and rGP5-WT VACV, or empty vector DNA and empty VACV respectively, served as controls. Virus challenge was given to separate groups of vaccinated pigs with VR2332 or MN184C. Necropsies were performed 14 days after challenge. RESULTS: Vaccination with the GP5-Mosaic-based vaccines resulted in cellular reactivity and higher levels of neutralizing antibodies to both VR2332 and MN184C PRRSV strains. In contrast, vaccination of animals with the GP5-WT vaccines induced responses only to VR2332. Furthermore, vaccination with the GP5-Mosaic based vaccines resulted in protection against challenge with two heterologous virus strains, as demonstrated by the significantly lower viral loads in serum, tissues, porcine alveolar macrophages (PAMs), and bronchoalveolar lavage (BAL) fluids, and less severe lung lesions after challenge with either MN184C or VR2332, which have only 85% identity. In contrast, significant protection by the GP5-WT based vaccines was only achieved against the VR2332 strain. Conclusions: GP5-Mosaic vaccines, using a DNA-prime/VACV boost regimen, conferred protection in pigs against heterologous viruses.

SELECTION OF CITATIONS
SEARCH DETAIL