ABSTRACT
BACKGROUND: The organism-wide effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection are well studied, but little is known about the dynamics of how the infection spreads in time among or within cells due to the scarcity of suitable high-resolution experimental systems. It has been reported that SARS-CoV-2 infection pathways converge at calcium influx and subcellular calcium distribution changes. Imaging combined with a proper staining technique is an effective tool for studying subcellular calcium-related infection and replication mechanisms at such resolutions. METHODS: Using two-photon (2P) fluorescence imaging with our novel Ca-selective dye, automated image analysis and clustering analysis were applied to reveal titer and variant effects on SARS-CoV-2-infected Vero E6 cells. RESULTS: The application of a new calcium sensor molecule is shown, combined with a high-end 2P technique for imaging and identifying the patterns associated with cellular infection damage within cells. Vero E6 cells infected with SARS-CoV-2 variants, D614G or B.1.1.7, exhibit elevated cytosolic calcium levels, allowing infection monitoring by tracking the cellular changes in calcium level by the internalized calcium sensor. The imaging provides valuable information on how the level and intracellular distribution of calcium are perturbed during the infection. Moreover, two-photon calcium sensing allowed the distinction of infections by two studied viral variants via cluster analysis of the image parameters. This approach will facilitate the study of cellular correlates of infection and their quantification depending on viral variants and viral load. CONCLUSIONS: We propose a new two-photon microscopy-based method combined with a cell-internalized sensor to quantify the level of SARS-CoV-2 infection. We optimized the applied dye concentrations to not interfere with viral fusion and viral replication events. The presented method ensured the proper monitoring of viral infection, replication, and cell fate. It also enabled distinguishing intracellular details of cell damage, such as vacuole and apoptotic body formation. Using clustering analysis, 2P microscopy calcium fluorescence images were suitable to distinguish two different viral variants in cell cultures. Cellular harm levels read out by calcium imaging were quantitatively related to the initial viral multiplicity of infection numbers. Thus, 2P quantitative calcium imaging might be used as a correlate of infection or a correlate of activity in cellular antiviral studies.
Subject(s)
COVID-19 , Calcium , Fluorescent Dyes , SARS-CoV-2 , Chlorocebus aethiops , Vero Cells , Calcium/metabolism , Calcium/analysis , Animals , COVID-19/virology , COVID-19/metabolism , Fluorescent Dyes/chemistry , Humans , PhotonsABSTRACT
Introduction: Bacterial outer membrane vesicles (OMVs) are emerging as important players in the host-microbiome interaction, while also proving to be a promising platform for vaccine development and targeted drug delivery. The available methods for measuring their biodistribution, however, are limited. We aimed to establish a high-efficiency radiolabeling method for the treatment of OMVs. Methods: 99mTc-HYNIC-duramycin was incubated with OMVs isolated from E. coli BL21(DE3) ΔnlpI ΔlpxM. Radiolabeling efficiency (RLE) and radiochemical purity (RCP) were measured with size-exclusion high-performance liquid chromatography. The biodistribution was quantitatively measured in mice using SPECT/CT imaging. Results: RLE was 81.84 ± 2.03% for undiluted OMV suspension and 56.17 ± 2.29% for 100× dilution. Postlabeling purification with a spin-desalting column results in 100% radioactivity in the OMV fraction according to HPLC, indicating 100% RCP of the final product. The biodistribution was found to be in line with previous data reported in the literature using other OMV tracking attempts. Conclusions: Our findings illustrate that using HYNIC-duramycin for labeling of the OMVs enhances efficiency and is easily implementable for in vivo imaging studies, significantly improving upon earlier methods.
ABSTRACT
[This corrects the article DOI: 10.1371/journal.pone.0264554.].
ABSTRACT
The important roles of bacterial outer membrane vesicles (OMVs) in various diseases and their emergence as a promising platform for vaccine development and targeted drug delivery necessitates the development of imaging techniques suitable for quantifying their biodistribution with high precision. To address this requirement, we aimed to develop an OMV specific radiolabeling technique for positron emission tomography (PET). A novel bacterial strain (E. coli BL21(DE3) ΔnlpI, ΔlpxM) was created for efficient OMV production, and OMVs were characterized using various methods. SpyCatcher was anchored to the OMV outer membrane using autotransporter-based surface display systems. Synthetic SpyTag-NODAGA conjugates were tested for OMV surface binding and 64Cu labeling efficiency. The final labeling protocol shows a radiochemical purity of 100% with a ~ 29% radiolabeling efficiency and excellent serum stability. The in vivo biodistribution of OMVs labeled with 64Cu was determined in mice using PET/MRI imaging which revealed that the biodistribution of radiolabeled OMVs in mice is characteristic of previously reported data with the highest organ uptakes corresponding to the liver and spleen 3, 6, and 12 h following intravenous administration. This novel method can serve as a basis for a general OMV radiolabeling scheme and could be used in vaccine- and drug-carrier development based on bioengineered OMVs.
Subject(s)
Escherichia coli , Extracellular Vesicles , Animals , Mice , Escherichia coli/metabolism , Bacterial Outer Membrane/metabolism , Tissue Distribution , Extracellular Vesicles/metabolism , Bacterial Outer Membrane Proteins/metabolism , Molecular ImagingABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 in vitro and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells. For the latter purpose, we equipped the ACE2 decoy with an epitope tag. Thereby, we converted it to an adapter molecule, which we successfully applied in the modular platforms UniMAB and UniCAR for retargeting of either unmodified or universal chimeric antigen receptor-modified immune effector cells. Our results pave the way for a clinical application of this novel ACE2 decoy, which will clearly improve COVID-19 treatment.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Angiotensin-Converting Enzyme 2 , COVID-19 Drug TreatmentABSTRACT
(1) Background: Humic substances are well-known human nutritional supplement materials and they play an important performance-enhancing role as animal feed additives. For decades, ingredients of humic substances have been proven to carry potent antiviral effects against different viruses. (2) Methods: Here, the antiviral activity of a humic substance containing ascorbic acid, Se- and Zn2+ ions intended as a nutritional supplement material was investigated against SARS-CoV-2 virus B1.1.7 Variant of Concern ("Alpha Variant") in a VeroE6 cell line. (3) Results: This combination has a significant in vitro antiviral effect at a very low concentration range of its intended active ingredients. (4) Conclusions: Even picomolar concentration ranges of humic substances, Vitamin C and Zn/Se ions in the given composition, were enough to achieve 50% viral replication inhibition in the applied SARS-CoV-2 virus inhibition test.
ABSTRACT
The aim of this study was to develop and characterize a Prussian Blue based biocompatible and chemically stable T1 magnetic resonance imaging (MRI) contrast agent with near infrared (NIR) optical contrast for preclinical application. The physical properties of the Prussian blue nanoparticles (PBNPs) (iron (II); iron (III);octadecacyanide) were characterized with dynamic light scattering (DLS), zeta potential measurement, atomic force microscopy (AFM), and transmission electron microscopy (TEM). In vitro contrast enhancement properties of PBNPs were determined by MRI. In vivo T1-weighted contrast of the prepared PBNPs was investigated by MRI and optical imaging modality after intravenous administration into NMRI-Foxn1 nu/nu mice. The biodistribution studies showed the presence of PBNPs predominantly in the cardiovascular system. Briefly, in this paper we show a novel approach for the synthesis of PBNPs with enhanced iron content for T1 MRI contrast. This newly synthetized PBNP platform could lead to a new diagnostic agent, replacing the currently used Gadolinium based substances.