Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Nature ; 436(7047): 44-8, 2005 Jul 07.
Article in English | MEDLINE | ID: mdl-16001058

ABSTRACT

Comprehensive analyses of remote sensing data during the three-year effort to select the Mars Exploration Rover landing sites at Gusev crater and at Meridiani Planum correctly predicted the atmospheric density profile during entry and descent and the safe and trafficable surfaces explored by the two rovers. The Gusev crater site was correctly predicted to be a low-relief surface that was less rocky than the Viking landing sites but comparably dusty. A dark, low-albedo, flat plain composed of basaltic sand and haematite with very few rocks was expected and found at Meridiani Planum. These results argue that future efforts to select safe landing sites based on existing and acquired remote sensing data will be successful. In contrast, geological interpretations of the sites based on remote sensing data were less certain and less successful, which emphasizes the inherent ambiguities in understanding surface geology from remotely sensed data and the uncertainty in predicting exactly what materials will be available for study at a landing site.

2.
Science ; 316(5825): 738-42, 2007 May 04.
Article in English | MEDLINE | ID: mdl-17478719

ABSTRACT

Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, whereas the upper unit may represent eolian reworking of the same pyroclastic materials.

3.
Science ; 306(5702): 1730-3, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15576608

ABSTRACT

The location of the Opportunity landing site was determined to better than 10-m absolute accuracy from analyses of radio tracking data. We determined Rover locations during traverses with an error as small as several centimeters using engineering telemetry and overlapping images. Topographic profiles generated from rover data show that the plains are very smooth from meter- to centimeter-length scales, consistent with analyses of orbital observations. Solar cell output decreased because of the deposition of airborne dust on the panels. The lack of dust-covered surfaces on Meridiani Planum indicates that high velocity winds must remove this material on a continuing basis. The low mechanical strength of the evaporitic rocks as determined from grinding experiments, and the abundance of coarse-grained surface particles argue for differential erosion of Meridiani Planum.


Subject(s)
Mars , Extraterrestrial Environment , Geologic Sediments , Spacecraft , Wind
4.
Science ; 305(5685): 810-3, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15297660

ABSTRACT

Wind-abraded rocks, ripples, drifts, and other deposits of windblown sediments are seen at the Columbia Memorial Station where the Spirit rover landed. Orientations of these features suggest formative winds from the north-northwest, consistent with predictions from atmospheric models of afternoon winds in Gusev Crater. Cuttings from the rover Rock Abrasion Tool are asymmetrically distributed toward the south-southeast, suggesting active winds from the north-northwest at the time (midday) of the abrasion operations. Characteristics of some rocks, such as a two-toned appearance, suggest that they were possibly buried and exhumed on the order of 5 to 60 centimeters by wind deflation, depending on location.


Subject(s)
Mars , Evolution, Planetary , Extraterrestrial Environment , Wind
5.
Science ; 305(5685): 821-4, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15297662

ABSTRACT

The precise location and relative elevation of Spirit during its traverses from the Columbia Memorial station to Bonneville crater were determined with bundle-adjusted retrievals from rover wheel turns, suspension and tilt angles, and overlapping images. Physical properties experiments show a decrease of 0.2% per Mars solar day in solar cell output resulting from deposition of airborne dust, cohesive soil-like deposits in plains and hollows, bright and dark rock coatings, and relatively weak volcanic rocks of basaltic composition. Volcanic, impact, aeolian, and water-related processes produced the encountered landforms and materials.


Subject(s)
Mars , Extraterrestrial Environment , Geologic Sediments , Volcanic Eruptions , Water , Wind
SELECTION OF CITATIONS
SEARCH DETAIL