ABSTRACT
Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).
Subject(s)
Climate Change/statistics & numerical data , Ecosystem , Animals , Aquatic Organisms , Climate , Datasets as Topic , Forecasting , Rain , Seasons , Species Specificity , Temperature , Time Factors , United KingdomABSTRACT
BACKGROUND: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. RESULTS: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed [Formula: see text] profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. CONCLUSIONS: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.
Subject(s)
Genetics, Population/methods , Polymorphism, Single Nucleotide/genetics , Sheep/genetics , Animals , Balkan Peninsula , Breeding/methods , Domestication , Genetic Testing/methods , Genetic Variation/genetics , Genotype , Phylogeny , Phylogeography/methodsABSTRACT
(1) Background: The Fst statistic is widely used to characterize between-breed relationships. Fst = 0.1 has frequently been taken as indicating genetic distinctiveness between breeds. This study investigates whether this is justified. (2) Methods: A database was created of 35,080 breed pairs and their corresponding Fst values, deduced from microsatellite and SNP studies covering cattle, sheep, goats, pigs, horses, and chickens. Overall, 6560 (19%) of breed pairs were between breeds located in the same country, 7395 (21%) between breeds of different countries within the same region, 20,563 (59%) between breeds located far apart, and 562 (1%) between a breed and the supposed wild ancestor of the species. (3) Results: General values for between-breed Fst were as follows, cattle: microsatellite 0.06-0.12, SNP 0.08-0.15; sheep: microsatellite 0.06-0.10, SNP 0.06-0.17; horses: microsatellite 0.04-0.11, SNP 0.08-0.12; goats: microsatellite 0.04-0.14, SNP 0.08-0.16; pigs: microsatellite 0.06-0.27, SNP 0.15-0.22; chickens: microsatellite 0.05-0.28, SNP 0.08-0.26. (4) Conclusions: (1) Large amounts of Fst data are available for a substantial proportion of the world's livestock breeds, (2) the value for between-breed Fst of 0.1 is not appropriate owing to its considerable variability, and (3) accumulated Fst data may have value for interdisciplinary research.
ABSTRACT
1. Studies examining changes in the scheduling of breeding in response to climate change have focused on species with well-defined breeding seasons. Species exhibiting year-round breeding have received little attention and the magnitudes of any responses are unknown. 2. We investigated phenological data for an enclosed feral population of cattle (Bos taurus L.) in northern England exhibiting year-round breeding. This population is relatively free of human interference. 3. We assessed whether the timing of births had changed over the last 60 years, in response to increasing winter and spring temperatures, changes in herd density, and a regime of lime fertilisation. 4. Median birth date became earlier by 1·0 days per year. Analyses of the seasonal distribution of calving dates showed that significantly fewer calves were born in summer (decline from 44% of total births to 20%) and significantly more in winter (increase from 12% to 30%) over the study period. The most pronounced changes occurred in winter, with significant increases in both the proportion and number of births. Winter births arise from conceptions in the previous spring, and we considered models that investigated climate and weather variables associated with the winter preceding and the spring of conceptions. 5. The proportion of winter births was higher when the onset of the plant growing season was earlier during the spring of conceptions. This relationship was much weaker during years when the site had been fertilised with lime, suggesting that increased forage biomass was over-riding the impacts of changing plant phenology. When the onset of the growing season was late, winter births increased with female density. 6. Recruitment estimates from a stage-structured state-space population model were significantly negatively correlated with the proportion of births in the preceding winter, suggesting that calves born in winter are less likely to survive than those born in other seasons. 7. This is one of the first studies to document changes in the phenology of a year-round breeder, suggesting that the impact of climate on the scheduling of biological events may be more extensive than previously thought and that impacts may be negative, even for species with relatively flexible breeding strategies.
Subject(s)
Cattle/physiology , Climate Change , Reproduction , Animals , England , Environment , Female , Male , Models, Biological , Parturition , Population Dynamics , SeasonsABSTRACT
Factors influencing grazing behavior in species-rich grasslands have been little studied. Methodologies have mostly had a primary focus on grasslands with lower floristic diversity.We test the hypothesis that grazing behavior is influenced by both animal and plant factors and investigate the relative importance of these factors, using a novel combination of video technology and vegetation classification to analyze bite and step rates.In a semi-natural, partially wooded grassland in northern Estonia, images of the vegetation being grazed and records of steps and bites were obtained from four video cameras, each mounted on the sternum of a sheep, during 41 animal-hours of observation over five days. Plant species lists for the immediate field of view were compiled. Images were partnered by direct observation of the nearest-neighbor relationships of the sheep. TWINSPAN, a standard vegetation classification technique allocating species lists to objectively defined classes by a principal components procedure, was applied to the species lists and 25 vegetation classes (15 open pasture and 10 woodland) were identified from the images.Taking bite and step rates as dependent variables, relative importance of animal factors (sheep identity), relative importance of day, and relative importance of plant factors (vegetation class) were investigated. The strongest effect on bite rates was of vegetation class. Sheep identity was less influential. When the data from woodland were excluded, sheep identity was more important than vegetation class as a source of variability in bite rate on open pasture.The original hypothesis is therefore supported, and we further propose that, at least with sheep in species-rich open pastures, animal factors will be more important in determining grazing behavior than plant factors. We predict quantifiable within-breed and between-breed differences, which could be exploited to optimize conservation grazing practices and contribute to the sustainability of extensive grazing systems.
ABSTRACT
Small ruminants are suited to a wide variety of habitats and thus represent promising study models for identifying genes underlying adaptations. Here, we considered local Mediterranean breeds of goats (n = 17) and sheep (n = 25) from Italy, France and Spain. Based on historical archives, we selected the breeds potentially most linked to a territory and defined their original cradle (i.e., the geographical area in which the breed has emerged), including transhumant pastoral areas. We then used the programs PCAdapt and LFMM to identify signatures of artificial and environmental selection. Considering cradles instead of current GPS coordinates resulted in a greater number of signatures identified by the LFMM analysis. The results, combined with a systematic literature review, revealed a set of genes with potentially key adaptive roles in relation to the gradient of aridity and altitude. Some of these genes have been previously implicated in lipid metabolism (SUCLG2, BMP2), hypoxia stress/lung function (BMPR2), seasonal patterns (SOX2, DPH6) or neuronal function (TRPC4, TRPC6). Selection signatures involving the PCDH9 and KLH1 genes, as well as NBEA/NBEAL1, were identified in both species and thus could play an important adaptive role.
Subject(s)
Goats/physiology , Sheep/physiology , Acclimatization , Adaptation, Physiological , Altitude , Animals , Breeding , Ecosystem , France , Italy , Mediterranean Region , SpainABSTRACT
Foraging behavior of livestock in species-rich, less intensively managed grassland communities will require different methodologies from those appropriate in floristically simple environments. In this pilot study on sheep in species-rich grassland in northern Estonia, foraging behavior and the plant species of the immediate area grazed by the sheep were registered by continually-recording Go-Pro cameras. From three days of observation of five sheep (706 animal-minutes), foraging behavior was documented. Five hundred and thirty-six still images were sampled, and a plant species list was compiled for each. Each plant species was assigned a score indicating its location, in the ecophysiological sense, on the main environmental gradient. The scores of the plant species present were averaged for each image. Thus, the fine structure of foraging behavior could be studied in parallel with the vegetation of the precise area being grazed. As expected, there was considerable individual variation, and we characterized foraging behavior by quantifying the patterns of interspersion of grazing and non-grazing behaviors. This combination of behavior recording and vegetation classification could enable a numerical analysis of the responses of grazing livestock to vegetation conditions.
ABSTRACT
Cattle Bos taurus can perform valuable ecological functions in the maintenance of high nature value (HNV) pastoral systems. They have also attracted attention as potentially filling the ecological niches of megaherbivores, notably the extinct aurochs Bos primigenius, in rewilding initiatives. Native cattle breeds are recognized under the 1992 Rio Convention as components of biodiversity. They are used in HNV settings, but their conservation as breeds has rarely been an important consideration for their management in these contexts.The Chillingham herd has been kept under minimal management in Chillingham Park (northern England) for several centuries. Chillingham Park is not a rewilding scenario, but the long-term study of the cattle can be informative for the design of rewilding schemes that involve cattle as megaherbivores. The pastures of the park are species-rich seminatural grasslands.To 2004, pasture management was influenced by the need to provide herbage for a flock of sheep that was under separate ownership, as well as for the cattle. Surveys of the vegetation conducted in 1979 and 2006-2008 showed a decline of plant species richness (species per 100 m2 quadrat) from 33.8 in 1979 to 22.6 in 2006-2008. This was acceptable as the conservation priority has always been the cattle herd. With removal of the sheep from 2004, it became possible to include recovery of plant diversity as a management goal.In 2017, the cattle numbered 111 (64 in 1979). Plant species richness in 2017 had increased to 26.3 species per quadrat. It has therefore been possible at Chillingham both to conserve the cattle herd and to improve plant diversity. While providing basic information of relevance to the management of cattle in free-ranging situations, this study also suggests a general principle, that the management of pastoral landscapes by native breeds of cattle, can deliver multiple conservation benefits.
ABSTRACT
Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.
Subject(s)
Acclimatization/physiology , Birds/physiology , Climate Change , Phenotype , Animals , Selection, Genetic/physiology , Time FactorsABSTRACT
Livestock conservation practice is changing rapidly in light of policy developments, climate change and diversifying market demands. The last decade has seen a step change in technology and analytical approaches available to define, manage and conserve Farm Animal Genomic Resources (FAnGR). However, these rapid changes pose challenges for FAnGR conservation in terms of technological continuity, analytical capacity and integrative methodologies needed to fully exploit new, multidimensional data. The final conference of the ESF Genomic Resources program aimed to address these interdisciplinary problems in an attempt to contribute to the agenda for research and policy development directions during the coming decade. By 2020, according to the Convention on Biodiversity's Aichi Target 13, signatories should ensure that " the genetic diversity of farmed and domesticated animals and of wild relatives is maintained, and strategies have been developed and implemented for minimizing genetic erosion and safeguarding their genetic diversity." However, the real extent of genetic erosion is very difficult to measure using current data. Therefore, this challenging target demands better coverage, understanding and utilization of genomic and environmental data, the development of optimized ways to integrate these data with social and other sciences and policy analysis to enable more flexible, evidence-based models to underpin FAnGR conservation. At the conference, we attempted to identify the most important problems for effective livestock genomic resource conservation during the next decade. Twenty priority questions were identified that could be broadly categorized into challenges related to methodology, analytical approaches, data management and conservation. It should be acknowledged here that while the focus of our meeting was predominantly around genetics, genomics and animal science, many of the practical challenges facing conservation of genomic resources are societal in origin and are predicated on the value (e.g., socio-economic and cultural) of these resources to farmers, rural communities and society as a whole. The overall conclusion is that despite the fact that the livestock sector has been relatively well-organized in the application of genetic methodologies to date, there is still a large gap between the current state-of-the-art in the use of tools to characterize genomic resources and its application to many non-commercial and local breeds, hampering the consistent utilization of genetic and genomic data as indicators of genetic erosion and diversity. The livestock genomic sector therefore needs to make a concerted effort in the coming decade to enable to the democratization of the powerful tools that are now at its disposal, and to ensure that they are applied in the context of breed conservation as well as development.
ABSTRACT
The Chillingham herd of wild Northumbrian cattle remains viable despite over 300 years of in-breeding and a near-homozygous nuclear genome. Here we report the complete mitochondrial DNA sequence using ultra-deep next generation sequencing. Random population sampling of ~10% of the extant herd identified a single mtDNA haplotype harbouring a unique bovine variant present in all other higher mammals (m.11789C/Y421H) which may contribute to their survival.