Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Comput Biol Med ; 144: 105339, 2022 05.
Article in English | MEDLINE | ID: mdl-35263687

ABSTRACT

The vocal folds (VFs) are a pair of muscles in the larynx that play a critical role in breathing, swallowing, and speaking. VF function can be adversely affected by various medical conditions including head or neck injuries, stroke, tumor, and neurological disorders. In this paper, we propose a deep learning system for automated detection of laryngeal adductor reflex (LAR) events in laryngeal endoscopy videos to enable objective, quantitative analysis of VF function. The proposed deep learning system incorporates our novel orthogonal region selection network and temporal context. This network learns to directly map its input to a VF open/close state without first segmenting or tracking the VF region. This one-step approach drastically reduces manual annotation needs from labor-intensive segmentation masks or VF motion tracks to frame-level class labels. The proposed spatio-temporal network with an orthogonal region selection subnetwork allows integration of local image features, global image features, and VF state information in time for robust LAR event detection. The proposed network is evaluated against several network variations that incorporate temporal context and is shown to lead to better performance. The experimental results show promising performance for automated, objective, and quantitative analysis of LAR events from laryngeal endoscopy videos with over 90% and 99% F1 scores for LAR and non-LAR frames respectively.


Subject(s)
Larynx , Deglutition , Endoscopy, Gastrointestinal , Larynx/diagnostic imaging , Larynx/physiology , Reflex/physiology , Vocal Cords
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2167-2172, 2020 07.
Article in English | MEDLINE | ID: mdl-33018436

ABSTRACT

Vocal folds (VFs) play a critical role in breathing, swallowing, and speech production. VF dysfunctions caused by various medical conditions can significantly reduce patients' quality of life and lead to life-threatening conditions such as aspiration pneumonia, caused by food and/or liquid "invasion" into the windpipe. Laryngeal endoscopy is routinely used in clinical practice to inspect the larynx and to assess the VF function. Unfortunately, the resulting videos are only visually inspected, leading to loss of valuable information that can be used for early diagnosis and disease or treatment monitoring. In this paper, we propose a deep learning-based image analysis solution for automated detection of laryngeal adductor reflex (LAR) events in laryngeal endoscopy videos. Laryngeal endoscopy image analysis is a challenging task because of anatomical variations and various imaging problems. Analysis of LAR events is further challenging because of data imbalance since these are rare events. In order to tackle this problem, we propose a deep learning system that consists of a two-stream network with a novel orthogonal region selection subnetwork. To our best knowledge, this is the first deep learning network that learns to directly map its input to a VF open/close state without first segmenting or tracking the VF region, which drastically reduces labor-intensive manual annotation needed for mask or track generation. The proposed two-stream network and the orthogonal region selection subnetwork allow integration of local and global information for improved performance. The experimental results show promising performance for the automated, objective, and quantitative analysis of LAR events from laryngeal endoscopy videos.Clinical relevance- This paper presents an objective, quantitative, and automatic deep learning based system for detection of laryngeal adductor reflex (LAR) events in laryngoscopy videos.


Subject(s)
Laryngoplasty , Larynx , Humans , Laryngoscopy , Larynx/diagnostic imaging , Quality of Life , Vocal Cords
SELECTION OF CITATIONS
SEARCH DETAIL