Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 20(3): 350-361, 2019 03.
Article in English | MEDLINE | ID: mdl-30718914

ABSTRACT

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Subject(s)
Agammaglobulinemia/immunology , B-Lymphocytes/immunology , Cation Transport Proteins/immunology , Zinc/immunology , Agammaglobulinemia/genetics , Agammaglobulinemia/metabolism , Animals , B-Lymphocytes/metabolism , Cation Transport Proteins/deficiency , Cation Transport Proteins/genetics , Child, Preschool , Cytosol/immunology , Cytosol/metabolism , Disease Models, Animal , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , Humans , Infant , Male , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pedigree , Zinc/metabolism
2.
Nat Immunol ; 19(9): 973-985, 2018 09.
Article in English | MEDLINE | ID: mdl-30127434

ABSTRACT

Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c+ conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory TH1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a-/- mice lack cDC2s, have CD4+ T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory TH1* cells.


Subject(s)
Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Dendritic Cells/immunology , Membrane Proteins/metabolism , Mycobacterium Infections/immunology , Mycobacterium bovis/physiology , Mycobacterium tuberculosis/physiology , Th1 Cells/immunology , Tuberculosis/immunology , Animals , Antigens, Differentiation, B-Lymphocyte/metabolism , Cells, Cultured , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Immunity , Immunologic Memory , Infant , Interferon-gamma/metabolism , Lymphadenopathy , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Mycobacterium Infections/genetics , Vaccination
3.
Immunity ; 53(2): 353-370.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32735845

ABSTRACT

The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL+SIGLEC6+ pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using high-dimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c+DC) heterogeneity originates from two distinct pathways of development. The lymphoid-primed IRF8hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL+SIGLEC6+ pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency.


Subject(s)
Antigens, CD34/metabolism , Dendritic Cells/cytology , Hematopoiesis/physiology , Interferon Regulatory Factors/metabolism , Animals , Antigens, CD1/metabolism , Cell Line , Cell Lineage/immunology , Dendritic Cells/immunology , Glycoproteins/metabolism , Hematopoietic Stem Cells/cytology , Humans , Interleukin-3 Receptor alpha Subunit/metabolism , Lipopolysaccharide Receptors/metabolism , Mice , Receptors, Immunologic/metabolism
4.
Cell ; 159(7): 1578-90, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25525876

ABSTRACT

Proteasomes and lysosomes constitute the major cellular systems that catabolize proteins to recycle free amino acids for energy and new protein synthesis. Tripeptidyl peptidase II (TPPII) is a large cytosolic proteolytic complex that functions in tandem with the proteasome-ubiquitin protein degradation pathway. We found that autosomal recessive TPP2 mutations cause recurrent infections, autoimmunity, and neurodevelopmental delay in humans. We show that a major function of TPPII in mammalian cells is to maintain amino acid levels and that TPPII-deficient cells compensate by increasing lysosome number and proteolytic activity. However, the overabundant lysosomes derange cellular metabolism by consuming the key glycolytic enzyme hexokinase-2 through chaperone-mediated autophagy. This reduces glycolysis and impairs the production of effector cytokines, including IFN-γ and IL-1ß. Thus, TPPII controls the balance between intracellular amino acid availability, lysosome number, and glycolysis, which is vital for adaptive and innate immunity and neurodevelopmental health.


Subject(s)
Adaptive Immunity , Aminopeptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Glycolysis , Immunity, Innate , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Amino Acid Sequence , Aminopeptidases/chemistry , Animals , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/chemistry , Female , Humans , Immunologic Deficiency Syndromes/immunology , Lysosomes/metabolism , Male , Models, Molecular , Molecular Sequence Data , Pedigree , Sequence Alignment , Serine Endopeptidases/chemistry
5.
Am J Hum Genet ; 111(4): 791-804, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38503300

ABSTRACT

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Subject(s)
Severe Combined Immunodeficiency , Infant , Humans , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/metabolism , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Mutation/genetics , T-Lymphocytes/metabolism , Mutation, Missense/genetics
6.
N Engl J Med ; 391(5): 434-441, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39083772

ABSTRACT

We discovered high-titer neutralizing autoantibodies against interleukin-10 in a child with infantile-onset inflammatory bowel disease (IBD), a phenocopy of inborn errors of interleukin-10 signaling. After B-cell-depletion therapy and an associated decrease in the anti-interleukin-10 titer, conventional IBD therapy could be withdrawn. A second child with neutralizing anti-interleukin-10 autoantibodies had a milder course of IBD and has been treated without B-cell depletion. We conclude that neutralizing anti-interleukin-10 autoantibodies may be a causative or modifying factor in IBD, with potential implications for therapy. (Funded by the National Institute for Health and Care Research and others.).


Subject(s)
Antibodies, Neutralizing , Autoantibodies , Inflammatory Bowel Diseases , Interleukin-10 , Humans , Interleukin-10/immunology , Autoantibodies/immunology , Autoantibodies/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/drug therapy , Male , Female , B-Lymphocytes/immunology , Infant , Child
7.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37421948

ABSTRACT

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Subject(s)
Brain Diseases , Intellectual Disability , Humans , Brain Diseases/genetics , Ion Channels/genetics , Brain , Intellectual Disability/genetics , Phenotype
8.
N Engl J Med ; 389(6): 527-539, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37342957

ABSTRACT

BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).


Subject(s)
Actins , Anemia , Guanine Nucleotide Exchange Factors , Inflammation , Animals , Humans , Mice , Actins/genetics , Actins/metabolism , Anemia/etiology , Anemia/genetics , Disease Models, Animal , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Hematopoiesis , Inflammation/etiology , Inflammation/genetics , Zebrafish/genetics , Zebrafish/metabolism
9.
Genome Res ; 32(7): 1343-1354, 2022 07.
Article in English | MEDLINE | ID: mdl-34933939

ABSTRACT

Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Subject(s)
Epigenomics , Translocation, Genetic , Chromatin/genetics , Histones , Humans , Oncogenes
10.
Trends Genet ; 37(1): 46-58, 2021 01.
Article in English | MEDLINE | ID: mdl-32977999

ABSTRACT

The concept that type I interferons (IFN-I) are essential to antiviral immunity derives from studies on animal models and cell lines. Virtually all pathogenic viruses have evolved countermeasures to IFN-I restriction, and genetic loss of viral IFN-I antagonists leads to virus attenuation. But just how important is IFN-I to antiviral defence in humans? The recent discovery of genetic defects of IFN-I signalling illuminates this and other questions of IFN biology, including the role of the mucosa-restricted type III IFNs (IFN-III), informing our understanding of the place of the IFN system within the concerted antiviral response. Here we review monogenic lesions of IFN-I signalling pathways and summarise the organising principles which emerge.


Subject(s)
Antiviral Agents/immunology , Immunity, Innate/immunology , Interferon Type I/antagonists & inhibitors , Viruses/immunology , Animals , Antiviral Agents/pharmacology , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Signal Transduction , Viruses/drug effects
11.
J Clin Immunol ; 44(4): 98, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598033

ABSTRACT

Biallelic null or hypomorphic variants in JAK3 cause SCID and less frequently Omenn syndrome. We investigated homozygous hypomorphic JAK3 mutations in two patients, and expression and function of a novel JAK3R431P variant in Omenn syndrome. Immunophenotyping of PBMC from the patient with the novel JAK3R431P variant was undertaken, by flow cytometry and Phosflow after stimulation with IL-2, IL-7, and IL-15. JAK3 expression was investigated by Western blotting. We report two patients with homozygous hypomorphic JAK3 variants and clinical features of Omenn syndrome. One patient had a previously described JAK3R775H variant, and the second had a novel JAK3R431P variant. One patient with a novel JAK3R431P variant had normal expression of JAK3 in immortalised EBV-LCL cells but reduced phosphorylation of STAT5 after stimulation with IL-2, IL-7, and IL-15 consistent with impaired kinase activity. These results suggest the JAK3R431P variant to be hypomorphic. Both patients are alive and well after allogeneic haematopoietic stem cell transplantation. They have full donor chimerism, restitution of thymopoiesis and development of appropriate antibody responses following vaccination. We expand the phenotype of hypomorphic JAK3 deficiency and demonstrate the importance of functional testing of novel variants in disease-causing genes.


Subject(s)
Janus Kinase 3 , Severe Combined Immunodeficiency , Humans , Infant , Interleukin-15 , Interleukin-2 , Interleukin-7 , Janus Kinase 3/genetics , Leukocytes, Mononuclear , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy
12.
J Allergy Clin Immunol ; 151(4): 1081-1095, 2023 04.
Article in English | MEDLINE | ID: mdl-36228738

ABSTRACT

BACKGROUND: In 2014, germline signal transducer and activator of transcription (STAT) 3 gain-of-function (GOF) mutations were first described to cause a novel multisystem disease of early-onset lymphoproliferation and autoimmunity. OBJECTIVE: This pivotal cohort study defines the scope, natural history, treatment, and overall survival of a large global cohort of patients with pathogenic STAT3 GOF variants. METHODS: We identified 191 patients from 33 countries with 72 unique mutations. Inclusion criteria included symptoms of immune dysregulation and a biochemically confirmed germline heterozygous GOF variant in STAT3. RESULTS: Overall survival was 88%, median age at onset of symptoms was 2.3 years, and median age at diagnosis was 12 years. Immune dysregulatory features were present in all patients: lymphoproliferation was the most common manifestation (73%); increased frequencies of double-negative (CD4-CD8-) T cells were found in 83% of patients tested. Autoimmune cytopenias were the second most common clinical manifestation (67%), followed by growth delay, enteropathy, skin disease, pulmonary disease, endocrinopathy, arthritis, autoimmune hepatitis, neurologic disease, vasculopathy, renal disease, and malignancy. Infections were reported in 72% of the cohort. A cellular and humoral immunodeficiency was observed in 37% and 51% of patients, respectively. Clinical symptoms dramatically improved in patients treated with JAK inhibitors, while a variety of other immunomodulatory treatment modalities were less efficacious. Thus far, 23 patients have undergone bone marrow transplantation, with a 62% survival rate. CONCLUSION: STAT3 GOF patients present with a wide array of immune-mediated disease including lymphoproliferation, autoimmune cytopenias, and multisystem autoimmunity. Patient care tends to be siloed, without a clear treatment strategy. Thus, early identification and prompt treatment implementation are lifesaving for STAT3 GOF syndrome.


Subject(s)
Immune System Diseases , Immunologic Deficiency Syndromes , Child , Humans , Autoimmunity/genetics , Cohort Studies , Gain of Function Mutation , Immunologic Deficiency Syndromes/genetics , Mutation , STAT3 Transcription Factor/genetics , Cell Proliferation , Lymphocytes
13.
J Clin Immunol ; 43(8): 1812-1826, 2023 11.
Article in English | MEDLINE | ID: mdl-37452206

ABSTRACT

A significant complication of HSCT is graft failure, although few studies focus on this problem in patients with inborn errors of immunity (IE). We explored outcome of second HSCT for IEI by a retrospective, single-centre study between 2002 and 2022. Four hundred ninety-three patients underwent allogeneic HSCT for severe combined immunodeficiency (SCID; n = 113, 22.9%) or non-SCID IEI (n = 380, 77.1%). Thirty patients (6.0%) required second HSCT. Unconditioned infusion or no serotherapy at first HSCT was more common in patients who required second transplant. Median interval between first and second HSCT was 0.97 years (range: 0.19-8.60 years); a different donor was selected for second HSCT in 24/30 (80.0%) patients. Conditioning regimens for second HSCT were predominately treosulfan-based (with thiotepa: n = 18, 60.0%; without, n = 6, 20.0%). Patients received grafts from peripheral blood stem cell (n = 25, 83.3%) or bone marrow (n = 5, 16.7%) with median stem cell dose 9.5 × 106 CD34 + cells/kilogram (range: 1.4-32.3). Median follow-up was 1.92 years (0.22-16.0). Overall survival was 80.8% and event-free survival was 64.7%. Four patients died, two of early-transplant related complications, and two of late sepsis post-second HSCT. Three patients required third HSCT; all are alive with 100% donor chimerism. Cumulative incidence of acute graft-versus-host disease was 28.4%, (all grade I-II). Viral reactivation was seen in 13/30 (43.3%) patients, including HHV6 (n = 6), CMV (n = 4), and adenovirus (n = 2). At latest follow-up, 25/26 surviving patients have donor chimerism ≥ 90% and 16/25 (64.0%) have discontinued immunoglobulin replacement. Second HSCT offers IEI patients with graft failure curative treatment with good overall survival and immunological recovery.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Humans , Retrospective Studies , Adenoviridae , Chimerism , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects
14.
J Allergy Clin Immunol ; 150(4): 955-964.e16, 2022 10.
Article in English | MEDLINE | ID: mdl-35182547

ABSTRACT

BACKGROUND: Inflammatory phenomena such as hyperinflammation or hemophagocytic lymphohistiocytosis are a frequent yet paradoxical accompaniment to virus susceptibility in patients with impairment of type I interferon (IFN-I) signaling caused by deficiency of signal transducer and activator of transcription 2 (STAT2) or IFN regulatory factor 9 (IRF9). OBJECTIVE: We hypothesized that altered and/or prolonged IFN-I signaling contributes to inflammatory complications in these patients. METHODS: We explored the signaling kinetics and residual transcriptional responses of IFN-stimulated primary cells from individuals with complete loss of one of STAT1, STAT2, or IRF9 as well as gene-edited induced pluripotent stem cell-derived macrophages. RESULTS: Deficiency of any IFN-stimulated gene factor 3 component suppressed but did not abrogate IFN-I receptor signaling, which was abnormally prolonged, in keeping with insufficient induction of negative regulators such as ubiquitin-specific peptidase 18 (USP18). In cells lacking either STAT2 or IRF9, this late transcriptional response to IFN-α2b mimicked the effect of IFN-γ. CONCLUSION: Our data suggest a model wherein the failure of negative feedback of IFN-I signaling in STAT2 and IRF9 deficiency leads to immune dysregulation. Aberrant IFN-α receptor signaling in STAT2- and IRF9-deficient cells switches the transcriptional output to a prolonged, IFN-γ-like response and likely contributes to clinically overt inflammation in these individuals.


Subject(s)
Interferon Type I , Factor IX , Humans , Interferon Type I/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-alpha , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Ubiquitin Thiolesterase , Ubiquitin-Specific Proteases
15.
J Allergy Clin Immunol ; 150(4): 931-946, 2022 10.
Article in English | MEDLINE | ID: mdl-35469842

ABSTRACT

BACKGROUND: Lymphocyte differentiation is regulated by coordinated actions of cytokines and signaling pathways. IL-21 activates STAT1, STAT3, and STAT5 and is fundamental for the differentiation of human B cells into memory cells and antibody-secreting cells. While STAT1 is largely nonessential and STAT3 is critical for this process, the role of STAT5 is unknown. OBJECTIVES: This study sought to delineate unique roles of STAT5 in activation and differentiation of human naive and memory B cells. METHODS: STAT activation was assessed by phospho-flow cytometry cell sorting. Differential gene expression was determined by RNA-sequencing and quantitative PCR. The requirement for STAT5B in B-cell and CD4+ T-cell differentiation was assessed using CRISPR-mediated STAT5B deletion from B-cell lines and investigating primary lymphocytes from individuals with germline STAT5B mutations. RESULTS: IL-21 activated STAT5 and strongly induced SOCS3 in human naive, but not memory, B cells. Deletion of STAT5B in B-cell lines diminished IL-21-mediated SOCS3 induction. PBMCs from STAT5B-null individuals contained expanded populations of immunoglobulin class-switched B cells, CD21loTbet+ B cells, and follicular T helper cells. IL-21 induced greater differentiation of STAT5B-deficient B cells into plasmablasts in vitro than B cells from healthy donors, correlating with higher expression levels of transcription factors promoting plasma cell formation. CONCLUSIONS: These findings reveal novel roles for STAT5B in regulating IL-21-induced human B-cell differentiation. This is achieved by inducing SOCS3 to attenuate IL-21 signaling, and BCL6 to repress class switching and plasma cell generation. Thus, STAT5B is critical for restraining IL-21-mediated B-cell differentiation. These findings provide insights into mechanisms underpinning B-cell responses during primary and subsequent antigen encounter and explain autoimmunity and dysfunctional humoral immunity in STAT5B deficiency.


Subject(s)
Cytokines , STAT5 Transcription Factor , Cell Differentiation , Cytokines/metabolism , Homeostasis , Humans , Immunoglobulin Isotypes/metabolism , RNA , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism
16.
J Allergy Clin Immunol ; 149(1): 369-378, 2022 01.
Article in English | MEDLINE | ID: mdl-33991581

ABSTRACT

BACKGROUND: Accurate, detailed, and standardized phenotypic descriptions are essential to support diagnostic interpretation of genetic variants and to discover new diseases. The Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. However, to date, the use of HPO has not yet been widely implemented in the field of inborn errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms. OBJECTIVES: We sought to systematically review available terms in HPO for the depiction of IEIs, to expand HPO, yielding more comprehensive sets of terms, and to reannotate IEIs with HPO terms to provide accurate, standardized phenotypic descriptions. METHODS: We initiated a collaboration involving expert clinicians, geneticists, researchers working on IEIs, and bioinformaticians. Multiple branches of the HPO tree were restructured and extended on the basis of expert review. Our ontology-guided machine learning coupled with a 2-tier expert review was applied to reannotate defined subgroups of IEIs. RESULTS: We revised and expanded 4 main branches of the HPO tree. Here, we reannotated 73 diseases from 4 International Union of Immunological Societies-defined IEI disease subgroups with HPO terms. We achieved a 4.7-fold increase in the number of phenotypic terms per disease. Given the new HPO annotations, we demonstrated improved ability to computationally match selected IEI cases to their known diagnosis, and improved phenotype-driven disease classification. CONCLUSIONS: Our targeted expansion and reannotation presents enhanced precision of disease annotation, will enable superior HPO-based IEI characterization, and hence benefit both IEI diagnostic and research activities.


Subject(s)
Genetic Diseases, Inborn/classification , Immune System Diseases/classification , Rare Diseases/classification , Biological Ontologies , Humans , Phenotype
17.
J Allergy Clin Immunol ; 149(2): 736-746, 2022 02.
Article in English | MEDLINE | ID: mdl-34111452

ABSTRACT

BACKGROUND: Heterozygous germline mutations in cytotoxic T lymphocyte-associated antigen-4 (CTLA4) impair the immunomodulatory function of regulatory T cells. Affected individuals are prone to life-threatening autoimmune and lymphoproliferative complications. A number of therapeutic options are currently being used with variable effectiveness. OBJECTIVE: Our aim was to characterize the responsiveness of patients with CTLA-4 insufficiency to specific therapies and provide recommendations for the diagnostic workup and therapy at an organ-specific level. METHODS: Clinical features, laboratory findings, and response to treatment were reviewed retrospectively in an international cohort of 173 carriers of CTLA4 mutation. Patients were followed between 2014 and 2020 for a total of 2624 months from diagnosis. Clinical manifestations were grouped on the basis of organ-specific involvement. Medication use and response were recorded and evaluated. RESULTS: Among the 173 CTLA4 mutation carriers, 123 (71%) had been treated for immune complications. Abatacept, rituximab, sirolimus, and corticosteroids ameliorated disease severity, especially in cases of cytopenias and lymphocytic organ infiltration of the gut, lungs, and central nervous system. Immunoglobulin replacement was effective in prevention of infection. Only 4 of 16 patients (25%) with cytopenia who underwent splenectomy had a sustained clinical response. Cure was achieved with stem cell transplantation in 13 of 18 patients (72%). As a result of the aforementioned methods, organ-specific treatment pathways were developed. CONCLUSION: Systemic immunosuppressants and abatacept may provide partial control but require ongoing administration. Allogeneic hematopoietic stem cell transplantation offers a possible cure for patients with CTLA-4 insufficiency.


Subject(s)
CTLA-4 Antigen/genetics , Germ-Line Mutation , Immunologic Deficiency Syndromes/therapy , Adolescent , Adult , Agammaglobulinemia/etiology , Aged , Autoimmune Diseases/etiology , CTLA-4 Antigen/deficiency , Child , Child, Preschool , Female , Genetic Association Studies , Hematopoietic Stem Cell Transplantation , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , Infant , Lung Diseases, Interstitial/etiology , Male , Middle Aged , Transplantation, Homologous , Young Adult
18.
Clin Infect Dis ; 74(1): 136-139, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33252644

ABSTRACT

We present a case of complete deficiency of the interferon alpha/beta receptor alpha chain (IFNAR1) in a child with fatal systemic hyperinflammation, apparently provoked by live-attenuated viral vaccination. Such pathologic hyperinflammation, fulfilling criteria for hemophagocytic lymphohistiocytosis, is an emerging phenotype accompanying inborn errors of type I interferon immunity.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Homozygote , Humans , Interferon-alpha/therapeutic use , Lymphohistiocytosis, Hemophagocytic/genetics , Receptor, Interferon alpha-beta/genetics
19.
J Clin Immunol ; 42(4): 851-858, 2022 05.
Article in English | MEDLINE | ID: mdl-35305204

ABSTRACT

Hematopoietic stem cell transplantation and gene therapy are the only curative therapies for severe combined immunodeficiency (SCID). In patients lacking a matched donor, TCRαß/CD19-depleted haploidentical family donor transplant (TCRαß-HaploSCT) is a promising strategy. Conditioned transplant in SCID correlates to better myeloid chimerism and reduced immunoglobulin dependency. We studied transplant outcome in SCID infants according to donor type, specifically TCRαß-HaploSCT, and conditioning, through retrospective cohort analysis of 52 consecutive infants with SCID transplanted between 2013 and 2020. Median age at transplant was 5.1 months (range, 0.8-16.6). Donors were TCRαß-HaploSCT (n = 16, 31.4%), matched family donor (MFD, n = 15, 29.4%), matched unrelated donor (MUD, n = 9, 17.6%), and matched unrelated cord blood (CB, n = 11, 21.6%). Forty-one (80%) received fludarabine/treosulfan-based conditioning, 3 (6%) had alemtuzumab only, and 7 (14%) received unconditioned infusions. For conditioned transplants (n = 41), 3-year overall survival was 91% (95% confidence interval, 52-99%) for TCRαß-HaploSCT, 80% (41-98%) for MFD, 87% (36-98%) for MUD, and 89% (43-98%) for CB (p = 0.89). Cumulative incidence of grade II-IV acute graft-versus-host disease was 11% (2-79%) after TCRαß-HaploSCT, 0 after MFD, 29% (7-100%) after MUD, and 11% (2-79%) after CB (p = 0.10). 9/10 patients who received alemtuzumab-only or unconditioned transplants survived. Myeloid chimerism was higher following conditioning (median 47%, range 0-100%) versus unconditioned transplant (median 3%, 0-9%) (p < 0.001), as was the proportion of immunoglobulin-free long-term survivors (n = 29/36, 81% vs n = 4/9, 54%) (p < 0.001). TCRαß-HaploSCT has comparable outcome to MUD and is a promising alternative donor strategy for infants with SCID lacking MFD. This study confirms that conditioned transplant offers better myeloid chimerism and immunoglobulin freedom in long-term survivors.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Alemtuzumab , Graft vs Host Disease/etiology , Humans , Infant , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Retrospective Studies , Severe Combined Immunodeficiency/surgery , Transplantation Conditioning , Unrelated Donors
20.
J Clin Immunol ; 42(4): 819-826, 2022 05.
Article in English | MEDLINE | ID: mdl-35288820

ABSTRACT

Current treatment for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID) includes enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplant (HSCT), or ex vivo corrected autologous hematopoietic stem cell gene therapy. Historic data show HSCT survival is superior using unconditioned matched sibling and family compared to matched unrelated and haploidentical donors. Recent improvement in HSCT outcomes prompted us to retrospectively examine HSCT survival and long-term graft function in ADA-SCID transplanted at our center. Thirty-three ADA-deficient patients received HSCT between 1989 and 2020, with follow-up data to January 2021. Chemotherapy conditioning regimens were defined as myeloablative (MAC-busulfan/cyclophosphamide), reduced-toxicity myeloablative (RT-MAC-treosulfan-based, since 2007), or no conditioning. Serotherapy used included alemtuzumab (with or without other conditioning agents) or antithymocyte globulin (ATG). ERT was introduced routinely in 2010 until commencement of conditioning. Median age at HSCT was 3.2 (0.8-99.8) months. Twenty-one (63.6%) received stem cells from unrelated or haploidentical donors. Seventeen (51.5%) received chemotherapy conditioning and 16 (48.5%) received alemtuzumab. Median follow-up was 7.5 (0.8-25.0) years. Overall survival (OS) and event-free survival (EFS) at 8 years were 90.9% (95% CI: 79.7-100.0%) and 79% (55-91%), respectively. OS after 2007 (n = 21) was 100% vs 75% before 2007 (n = 12) (p = 0.02). Three (9.1%) died after HSCT: two from multiorgan failure and one from unexplained encephalopathy. There were no deaths after 2007, among those who received ERT and treosulfan-based conditioning pre-HSCT. Ten (30.3%) developed acute GvDH (3 grade II, 2 grade III); no chronic GvHD was observed. In the modern era, conditioned HSCT with MUD has a favorable outcome for ADA-deficient patients.


Subject(s)
Adenosine Deaminase , Agammaglobulinemia , Enzyme Replacement Therapy , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Severe Combined Immunodeficiency , Adenosine Deaminase/genetics , Agammaglobulinemia/surgery , Alemtuzumab/therapeutic use , Enzyme Replacement Therapy/methods , Genetic Therapy/methods , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/methods , Humans , Retrospective Studies , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/surgery , Transplantation Conditioning
SELECTION OF CITATIONS
SEARCH DETAIL