Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
1.
Cell ; 176(3): 459-467.e13, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30639103

ABSTRACT

The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257's unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.


Subject(s)
Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/ultrastructure , Animals , Cannabinoid Receptor Antagonists/pharmacology , Cannabinoids/pharmacology , Drug Design , Endocannabinoids , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/chemistry , Receptors, Cannabinoid/chemistry , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/ultrastructure , Receptors, G-Protein-Coupled/metabolism , Sf9 Cells , Structure-Activity Relationship
2.
Cell ; 172(1-2): 68-80.e12, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29290469

ABSTRACT

Signaling across cellular membranes, the 826 human G protein-coupled receptors (GPCRs) govern a wide range of vital physiological processes, making GPCRs prominent drug targets. X-ray crystallography provided GPCR molecular architectures, which also revealed the need for additional structural dynamics data to support drug development. Here, nuclear magnetic resonance (NMR) spectroscopy with the wild-type-like A2A adenosine receptor (A2AAR) in solution provides a comprehensive characterization of signaling-related structural dynamics. All six tryptophan indole and eight glycine backbone 15N-1H NMR signals in A2AAR were individually assigned. These NMR probes provided insight into the role of Asp522.50 as an allosteric link between the orthosteric drug binding site and the intracellular signaling surface, revealing strong interactions with the toggle switch Trp 2466.48, and delineated the structural response to variable efficacy of bound drugs across A2AAR. The present data support GPCR signaling based on dynamic interactions between two semi-independent subdomains connected by an allosteric switch at Asp522.50.


Subject(s)
Allosteric Regulation , Receptor, Adenosine A2A/chemistry , Signal Transduction , Adenosine A2 Receptor Agonists/chemistry , Adenosine A2 Receptor Agonists/pharmacology , Allosteric Site , Animals , Molecular Docking Simulation , Pichia , Protein Binding , Receptor, Adenosine A2A/metabolism , Sf9 Cells , Spodoptera
3.
Cell ; 172(4): 719-730.e14, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29398112

ABSTRACT

Drugs frequently require interactions with multiple targets-via a process known as polypharmacology-to achieve their therapeutic actions. Currently, drugs targeting several serotonin receptors, including the 5-HT2C receptor, are useful for treating obesity, drug abuse, and schizophrenia. The competing challenges of developing selective 5-HT2C receptor ligands or creating drugs with a defined polypharmacological profile, especially aimed at G protein-coupled receptors (GPCRs), remain extremely difficult. Here, we solved two structures of the 5-HT2C receptor in complex with the highly promiscuous agonist ergotamine and the 5-HT2A-C receptor-selective inverse agonist ritanserin at resolutions of 3.0 Å and 2.7 Å, respectively. We analyzed their respective binding poses to provide mechanistic insights into their receptor recognition and opposing pharmacological actions. This study investigates the structural basis of polypharmacology at canonical GPCRs and illustrates how understanding characteristic patterns of ligand-receptor interaction and activation may ultimately facilitate drug design at multiple GPCRs.


Subject(s)
Ergotamine/chemistry , Receptor, Serotonin, 5-HT2C/chemistry , Ritanserin/chemistry , Serotonin 5-HT2 Receptor Agonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/chemistry , HEK293 Cells , Humans , Obesity/drug therapy , Obesity/metabolism , Protein Domains , Receptor, Serotonin, 5-HT2C/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Structure-Activity Relationship , Substance-Related Disorders/drug therapy , Substance-Related Disorders/metabolism
4.
Cell ; 172(1-2): 55-67.e15, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29307491

ABSTRACT

The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics.


Subject(s)
Molecular Docking Simulation , Receptors, Opioid, kappa/chemistry , Analgesics/chemistry , Analgesics/pharmacology , Animals , Binding Sites , HEK293 Cells , Humans , Molecular Dynamics Simulation , Morphinans/chemistry , Morphinans/pharmacology , Protein Binding , Protein Stability , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Sf9 Cells , Spodoptera
5.
Cell ; 167(3): 750-762.e14, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768894

ABSTRACT

Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.


Subject(s)
Cannabinoid Receptor Antagonists/chemistry , Morpholines/chemistry , Pyrazoles/chemistry , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/chemistry , Binding Sites , Cannabinoids/pharmacology , Cannabis/chemistry , Crystallography, X-Ray , Dronabinol/pharmacology , Endocannabinoids/pharmacology , Humans , Ligands , Morpholines/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Pyrazoles/chemical synthesis
6.
Cell ; 161(7): 1633-43, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26091040

ABSTRACT

Lipid biology continues to emerge as an area of significant therapeutic interest, particularly as the result of an enhanced understanding of the wealth of signaling molecules with diverse physiological properties. This growth in knowledge is epitomized by lysophosphatidic acid (LPA), which functions through interactions with at least six cognate G protein-coupled receptors. Herein, we present three crystal structures of LPA1 in complex with antagonist tool compounds selected and designed through structural and stability analyses. Structural analysis combined with molecular dynamics identified a basis for ligand access to the LPA1 binding pocket from the extracellular space contrasting with the proposed access for the sphingosine 1-phosphate receptor. Characteristics of the LPA1 binding pocket raise the possibility of promiscuous ligand recognition of phosphorylated endocannabinoids. Cell-based assays confirmed this hypothesis, linking the distinct receptor systems through metabolically related ligands with potential functional and therapeutic implications for treatment of disease.


Subject(s)
Crystallography, X-Ray , Binding Sites , Chromatography, Gel , Humans , Ligands , Models, Molecular , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysosphingolipid/chemistry , Small Molecule Libraries
7.
Cell ; 161(4): 833-44, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25913193

ABSTRACT

Angiotensin II type 1 receptor (AT(1)R) is a G protein-coupled receptor that serves as a primary regulator for blood pressure maintenance. Although several anti-hypertensive drugs have been developed as AT(1)R blockers (ARBs), the structural basis for AT(1)R ligand-binding and regulation has remained elusive, mostly due to the difficulties of growing high-quality crystals for structure determination using synchrotron radiation. By applying the recently developed method of serial femtosecond crystallography at an X-ray free-electron laser, we successfully determined the room-temperature crystal structure of the human AT(1)R in complex with its selective antagonist ZD7155 at 2.9-Å resolution. The AT(1)R-ZD7155 complex structure revealed key structural features of AT(1)R and critical interactions for ZD7155 binding. Docking simulations of the clinically used ARBs into the AT(1)R structure further elucidated both the common and distinct binding modes for these anti-hypertensive drugs. Our results thereby provide fundamental insights into AT(1)R structure-function relationship and structure-based drug design.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Receptor, Angiotensin, Type 1/chemistry , Amino Acid Sequence , Angiotensin II Type 1 Receptor Blockers/chemistry , Crystallography, X-Ray , Humans , Molecular Sequence Data , Mutagenesis , Naphthyridines/chemistry , Naphthyridines/pharmacology , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Sequence Alignment
8.
Nature ; 606(7915): 820-826, 2022 06.
Article in English | MEDLINE | ID: mdl-35676483

ABSTRACT

γ-Aminobutyric acid (GABA) transporter 1 (GAT1)1 regulates neuronal excitation of the central nervous system by clearing the synaptic cleft of the inhibitory neurotransmitter GABA upon its release from synaptic vesicles. Elevating the levels of GABA in the synaptic cleft, by inhibiting GABA reuptake transporters, is an established strategy to treat neurological disorders, such as epilepsy2. Here we determined the cryo-electron microscopy structure of full-length, wild-type human GAT1 in complex with its clinically used inhibitor tiagabine3, with an ordered part of only 60 kDa. Our structure reveals that tiagabine locks GAT1 in the inward-open conformation, by blocking the intracellular gate of the GABA release pathway, and thus suppresses neurotransmitter uptake. Our results provide insights into the mixed-type inhibition of GAT1 by tiagabine, which is an important anticonvulsant medication. Its pharmacodynamic profile, confirmed by our experimental data, suggests initial binding of tiagabine to the substrate-binding site in the outward-open conformation, whereas our structure presents the drug stalling the transporter in the inward-open conformation, consistent with a two-step mechanism of inhibition4. The presented structure of GAT1 gives crucial insights into the biology and pharmacology of this important neurotransmitter transporter and provides blueprints for the rational design of neuromodulators, as well as moving the boundaries of what is considered possible in single-particle cryo-electron microscopy of challenging membrane proteins.


Subject(s)
GABA Plasma Membrane Transport Proteins , GABA Uptake Inhibitors , gamma-Aminobutyric Acid , Anticonvulsants/chemistry , Anticonvulsants/pharmacology , Cryoelectron Microscopy , GABA Plasma Membrane Transport Proteins/chemistry , GABA Plasma Membrane Transport Proteins/metabolism , GABA Plasma Membrane Transport Proteins/ultrastructure , GABA Uptake Inhibitors/chemistry , GABA Uptake Inhibitors/pharmacology , Humans , Neurotransmitter Agents/metabolism , Protein Conformation/drug effects , Tiagabine/chemistry , Tiagabine/metabolism , Tiagabine/pharmacology , gamma-Aminobutyric Acid/metabolism
9.
Immunity ; 46(6): 1005-1017.e5, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28636951

ABSTRACT

CCR5 is the primary chemokine receptor utilized by HIV to infect leukocytes, whereas CCR5 ligands inhibit infection by blocking CCR5 engagement with HIV gp120. To guide the design of improved therapeutics, we solved the structure of CCR5 in complex with chemokine antagonist [5P7]CCL5. Several structural features appeared to contribute to the anti-HIV potency of [5P7]CCL5, including the distinct chemokine orientation relative to the receptor, the near-complete occupancy of the receptor binding pocket, the dense network of intermolecular hydrogen bonds, and the similarity of binding determinants with the FDA-approved HIV inhibitor Maraviroc. Molecular modeling indicated that HIV gp120 mimicked the chemokine interaction with CCR5, providing an explanation for the ability of CCR5 to recognize diverse ligands and gp120 variants. Our findings reveal that structural plasticity facilitates receptor-chemokine specificity and enables exploitation by HIV, and provide insight into the design of small molecule and protein inhibitors for HIV and other CCR5-mediated diseases.


Subject(s)
Chemokine CCL5/chemistry , HIV Envelope Protein gp120/chemistry , HIV Infections/immunology , HIV-1/physiology , Models, Molecular , Molecular Mimicry , Receptors, CCR5/chemistry , Animals , CCR5 Receptor Antagonists/chemistry , CCR5 Receptor Antagonists/pharmacology , Chemokine CCL5/metabolism , Cloning, Molecular , Crystallography, X-Ray , Cyclohexanes/chemistry , Cyclohexanes/pharmacology , HIV Envelope Protein gp120/metabolism , HIV Fusion Inhibitors/chemistry , HIV Infections/drug therapy , Humans , Maraviroc , Protein Binding , Protein Conformation , Receptors, CCR5/metabolism , Sf9 Cells , Spodoptera , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology , Virus Internalization/drug effects
10.
Nature ; 584(7820): 298-303, 2020 08.
Article in English | MEDLINE | ID: mdl-32555460

ABSTRACT

Metabotropic γ-aminobutyric acid receptors (GABAB) are involved in the modulation of synaptic responses in the central nervous system and have been implicated in neuropsychological conditions that range from addiction to psychosis1. GABAB belongs to class C of the G-protein-coupled receptors, and its functional entity comprises an obligate heterodimer that is composed of the GB1 and GB2 subunits2. Each subunit possesses an extracellular Venus flytrap domain, which is connected to a canonical seven-transmembrane domain. Here we present four cryo-electron microscopy structures of the human full-length GB1-GB2 heterodimer: one structure of its inactive apo state, two intermediate agonist-bound forms and an active form in which the heterodimer is bound to an agonist and a positive allosteric modulator. The structures reveal substantial differences, which shed light on the complex motions that underlie the unique activation mechanism of GABAB. Our results show that agonist binding leads to the closure of the Venus flytrap domain of GB1, triggering a series of transitions, first rearranging and bringing the two transmembrane domains into close contact along transmembrane helix 6 and ultimately inducing conformational rearrangements in the GB2 transmembrane domain via a lever-like mechanism to initiate downstream signalling. This active state is stabilized by a positive allosteric modulator binding at the transmembrane dimerization interface.


Subject(s)
Cryoelectron Microscopy , Receptors, GABA-B/chemistry , Receptors, GABA-B/ultrastructure , Allosteric Regulation/drug effects , Apoproteins/chemistry , Apoproteins/metabolism , Apoproteins/ultrastructure , Binding Sites/drug effects , GABA-B Receptor Agonists/chemistry , GABA-B Receptor Agonists/metabolism , GABA-B Receptor Agonists/pharmacology , Humans , Models, Molecular , Protein Domains/drug effects , Protein Multimerization/drug effects , Receptors, GABA-B/metabolism , Signal Transduction , Structure-Activity Relationship
11.
Nature ; 579(7797): 152-157, 2020 03.
Article in English | MEDLINE | ID: mdl-32076264

ABSTRACT

GPR52 is a class-A orphan G-protein-coupled receptor that is highly expressed in the brain and represents a promising therapeutic target for the treatment of Huntington's disease and several psychiatric disorders1,2. Pathological malfunction of GPR52 signalling occurs primarily through the heterotrimeric Gs protein2, but it is unclear how GPR52 and Gs couple for signal transduction and whether a native ligand or other activating input is required. Here we present the high-resolution structures of human GPR52 in three states: a ligand-free state, a Gs-coupled self-activation state and a potential allosteric ligand-bound state. Together, our structures reveal that extracellular loop 2 occupies the orthosteric binding pocket and operates as a built-in agonist, conferring an intrinsically high level of basal activity to GPR523. A fully active state is achieved when Gs is coupled to GPR52 in the absence of an external agonist. The receptor also features a side pocket for ligand binding. These insights into the structure and function of GPR52 could improve our understanding of other self-activated GPCRs, enable the identification of endogenous and tool ligands, and guide drug discovery efforts that target GPR52.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Allosteric Regulation , Allosteric Site , Amino Acid Motifs , Amino Acid Sequence , Apoproteins/agonists , Apoproteins/chemistry , Apoproteins/metabolism , Binding Sites , Cryoelectron Microscopy , Crystallography, X-Ray , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , Humans , Ligands , Models, Molecular , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/ultrastructure
12.
13.
Nature ; 569(7755): 289-292, 2019 05.
Article in English | MEDLINE | ID: mdl-31019305

ABSTRACT

The human MT1 and MT2 melatonin receptors1,2 are G-protein-coupled receptors (GPCRs) that help to regulate circadian rhythm and sleep patterns3. Drug development efforts have targeted both receptors for the treatment of insomnia, circadian rhythm and mood disorders, and cancer3, and MT2 has also been implicated in type 2 diabetes4,5. Here we report X-ray free electron laser (XFEL) structures of the human MT2 receptor in complex with the agonists 2-phenylmelatonin (2-PMT) and ramelteon6 at resolutions of 2.8 Å and 3.3 Å, respectively, along with two structures of function-related mutants: H2085.46A (superscripts represent the Ballesteros-Weinstein residue numbering nomenclature7) and N862.50D, obtained in complex with 2-PMT. Comparison of the structures of MT2 with a published structure8 of MT1 reveals that, despite conservation of the orthosteric ligand-binding site residues, there are notable conformational variations as well as differences in [3H]melatonin dissociation kinetics that provide insights into the selectivity between melatonin receptor subtypes. A membrane-buried lateral ligand entry channel is observed in both MT1 and MT2, but in addition the MT2 structures reveal a narrow opening towards the solvent in the extracellular part of the receptor. We provide functional and kinetic data that support a prominent role for intramembrane ligand entry in both receptors, and suggest that there might also be an extracellular entry path in MT2. Our findings contribute to a molecular understanding of melatonin receptor subtype selectivity and ligand access modes, which are essential for the design of highly selective melatonin tool compounds and therapeutic agents.


Subject(s)
Electrons , Lasers , Models, Molecular , Receptor, Melatonin, MT2/chemistry , Receptor, Melatonin, MT2/metabolism , Crystallization , Diabetes Mellitus, Type 2/genetics , Humans , Indenes/chemistry , Indenes/metabolism , Ligands , Melatonin/analogs & derivatives , Melatonin/chemistry , Melatonin/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Receptor, Melatonin, MT1/chemistry , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/genetics , Structure-Activity Relationship , Substrate Specificity
14.
Nature ; 569(7755): 284-288, 2019 05.
Article in English | MEDLINE | ID: mdl-31019306

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Subject(s)
Electrons , Lasers , Models, Molecular , Receptor, Melatonin, MT1/chemistry , Receptor, Melatonin, MT1/metabolism , Acetamides/chemistry , Acetamides/metabolism , Amino Acid Sequence , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Crystallization , Humans , Indenes/chemistry , Indenes/metabolism , Ligands , Melatonin/analogs & derivatives , Melatonin/chemistry , Molecular Docking Simulation , Mutation , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT1/genetics , Receptor, Serotonin, 5-HT2C/chemistry , Structure-Activity Relationship , Substrate Specificity
15.
Proc Natl Acad Sci U S A ; 119(32): e2116289119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35917342

ABSTRACT

Glioblastoma (GBM) is an aggressive malignant primary brain tumor with limited therapeutic options. We show that the angiotensin II (AngII) type 2 receptor (AT2R) is a therapeutic target for GBM and that AngII, endogenously produced in GBM cells, promotes proliferation through AT2R. We repurposed EMA401, an AT2R antagonist originally developed as a peripherally restricted analgesic, for GBM and showed that it inhibits the proliferation of AT2R-expressing GBM spheroids and blocks their invasiveness and angiogenic capacity. The crystal structure of AT2R bound to EMA401 was determined and revealed the receptor to be in an active-like conformation with helix-VIII blocking G-protein or ß-arrestin recruitment. The architecture and interactions of EMA401 in AT2R differ drastically from complexes of AT2R with other relevant compounds. To enhance central nervous system (CNS) penetration of EMA401, we exploited the crystal structure to design an angiopep-2-tethered EMA401 derivative, A3E. A3E exhibited enhanced CNS penetration, leading to reduced tumor volume, inhibition of proliferation, and increased levels of apoptosis in an orthotopic xenograft model of GBM.


Subject(s)
Angiotensin II Type 2 Receptor Blockers , Benzhydryl Compounds , Brain Neoplasms , Drug Repositioning , Glioblastoma , Isoquinolines , Receptor, Angiotensin, Type 2 , Analgesics/pharmacology , Angiotensin II/chemistry , Angiotensin II/pharmacology , Angiotensin II Type 2 Receptor Blockers/therapeutic use , Apoptosis , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Protein Conformation, alpha-Helical , Receptor, Angiotensin, Type 2/chemistry , Receptor, Angiotensin, Type 2/metabolism , Tumor Burden/drug effects
16.
Nature ; 560(7720): 666-670, 2018 08.
Article in English | MEDLINE | ID: mdl-30135577

ABSTRACT

Frizzled receptors (FZDs) are class-F G-protein-coupled receptors (GPCRs) that function in Wnt signalling and are essential for developing and adult organisms1,2. As central mediators in this complex signalling pathway, FZDs serve as gatekeeping proteins both for drug intervention and for the development of probes in basic and in therapeutic research. Here we present an atomic-resolution structure of the human Frizzled 4 receptor (FZD4) transmembrane domain in the absence of a bound ligand. The structure reveals an unusual transmembrane architecture in which helix VI is short and tightly packed, and is distinct from all other GPCR structures reported so far. Within this unique transmembrane fold is an extremely narrow and highly hydrophilic pocket that is not amenable to the binding of traditional GPCR ligands. We show that such a pocket is conserved across all FZDs, which may explain the long-standing difficulties in the development of ligands for these receptors. Molecular dynamics simulations on the microsecond timescale and mutational analysis uncovered two coupled, dynamic kinks located at helix VII that are involved in FZD4 activation. The stability of the structure in its ligand-free form, an unfavourable pocket for ligand binding and the two unusual kinks on helix VII suggest that FZDs may have evolved a novel ligand-recognition and activation mechanism that is distinct from that of other GPCRs.


Subject(s)
Frizzled Receptors/chemistry , Binding Sites , Crystallography, X-Ray , Cysteine/metabolism , Dishevelled Proteins/metabolism , Frizzled Receptors/genetics , Humans , Ligands , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Wnt Signaling Pathway
18.
Nature ; 546(7657): 312-315, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28514449

ABSTRACT

The glucagon-like peptide-1 receptor (GLP-1R) and the glucagon receptor (GCGR) are members of the secretin-like class B family of G-protein-coupled receptors (GPCRs) and have opposing physiological roles in insulin release and glucose homeostasis. The treatment of type 2 diabetes requires positive modulation of GLP-1R to inhibit glucagon secretion and stimulate insulin secretion in a glucose-dependent manner. Here we report crystal structures of the human GLP-1R transmembrane domain in complex with two different negative allosteric modulators, PF-06372222 and NNC0640, at 2.7 and 3.0 Å resolution, respectively. The structures reveal a common binding pocket for negative allosteric modulators, present in both GLP-1R and GCGR and located outside helices V-VII near the intracellular half of the receptor. The receptor is in an inactive conformation with compounds that restrict movement of the intracellular tip of helix VI, a movement that is generally associated with activation mechanisms in class A GPCRs. Molecular modelling and mutagenesis studies indicate that agonist positive allosteric modulators target the same general region, but in a distinct sub-pocket at the interface between helices V and VI, which may facilitate the formation of an intracellular binding site that enhances G-protein coupling.


Subject(s)
Glucagon-Like Peptide-1 Receptor/chemistry , Glucagon-Like Peptide-1 Receptor/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Amino Acid Sequence , Aminopyridines/chemistry , Aminopyridines/metabolism , Aminopyridines/pharmacology , Benzamides/chemistry , Benzamides/metabolism , Benzamides/pharmacology , Crystallography, X-Ray , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Models, Molecular , Phenylurea Compounds/chemistry , Phenylurea Compounds/metabolism , Phenylurea Compounds/pharmacology , Protein Domains
19.
Nature ; 547(7664): 468-471, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28678776

ABSTRACT

The cannabinoid receptor 1 (CB1) is the principal target of the psychoactive constituent of marijuana, the partial agonist Δ9-tetrahydrocannabinol (Δ9-THC). Here we report two agonist-bound crystal structures of human CB1 in complex with a tetrahydrocannabinol (AM11542) and a hexahydrocannabinol (AM841) at 2.80 Å and 2.95 Å resolution, respectively. The two CB1-agonist complexes reveal important conformational changes in the overall structure, relative to the antagonist-bound state, including a 53% reduction in the volume of the ligand-binding pocket and an increase in the surface area of the G-protein-binding region. In addition, a 'twin toggle switch' of Phe2003.36 and Trp3566.48 (superscripts denote Ballesteros-Weinstein numbering) is experimentally observed and appears to be essential for receptor activation. The structures reveal important insights into the activation mechanism of CB1 and provide a molecular basis for predicting the binding modes of Δ9-THC, and endogenous and synthetic cannabinoids. The plasticity of the binding pocket of CB1 seems to be a common feature among certain class A G-protein-coupled receptors. These findings should inspire the design of chemically diverse ligands with distinct pharmacological properties.


Subject(s)
Cannabinoid Receptor Agonists/chemistry , Dronabinol/analogs & derivatives , Droperidol/analogs & derivatives , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/chemistry , Binding Sites , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/pharmacology , Crystallography, X-Ray , Dronabinol/chemical synthesis , Dronabinol/chemistry , Dronabinol/pharmacology , Droperidol/chemical synthesis , Droperidol/chemistry , Droperidol/pharmacology , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Protein Conformation , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism
20.
Nature ; 544(7650): 327-332, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28379944

ABSTRACT

The angiotensin II receptors AT1R and AT2R serve as key components of the renin-angiotensin-aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or ß-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure-activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.


Subject(s)
Models, Molecular , Receptor, Angiotensin, Type 2/chemistry , Receptor, Angiotensin, Type 2/metabolism , Angiotensin II Type 2 Receptor Blockers/chemistry , Angiotensin II Type 2 Receptor Blockers/metabolism , Binding Sites/genetics , Crystallography, X-Ray , Drug Design , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Ligands , Molecular Docking Simulation , Mutation , Protein Binding , Protein Conformation , Receptor, Angiotensin, Type 1/chemistry , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/agonists , Receptor, Angiotensin, Type 2/genetics , Signal Transduction , Structure-Activity Relationship , Substrate Specificity/genetics , beta-Arrestins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL