Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Opt Lett ; 48(18): 4837-4840, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37707915

ABSTRACT

The Gaussian-modulated coherent state (GMCS) is a well-known continuous-variable quantum key distribution (CV-QKD) protocol that is robust to incoherent background noise and can effectively suppress ambient light in free space. However, it is difficult to implement this protocol in free space using existing polarization coding schemes. In this Letter, we propose a polarization coding structure based on a self-compensating fiber Sagnac interferometer, which can reduce the required modulation voltage by two orders of magnitude and achieve fast and arbitrary polarization modulation, and experimentally demonstrate polarization coding-based GMCS CV-QKD for, it is believed, the first time. The proposed polarization modulation structure, which uses off-the-shelf fiber components, is compact, simple, and suitable for mobile terminals, such as flying lifts.

2.
J Econ Entomol ; 108(2): 769-79, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26470189

ABSTRACT

The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a major agriculture pest. It can be found worldwide, has an extensive host plant range, and has shown resistance to pesticides. Organophosphate and carbamate insecticides account for more than one-third of all insecticide sales. Insecticide resistance and the toxicity of organophosphate and carbamate insecticides to mammals have become a growing concern. Acetylcholinesterase (AChE) is the major targeted enzyme of organophosphate and carbamate insecticides. In this study, we fully cloned, sequenced and characterized the ace1 gene of T. cinnabarinus, and identified the differences between T. cinnabarinus AChE1, Tetranychus urticae Koch AChE1, and human AChE1. Resistance-associated target-site mutations were displayed by comparing the AChE amino acid sequences and their AChE three-dimensional (3D) structures of the insecticide-susceptible strains of T. cinnabarinus and T. urticae to that of a T. urticae-resistant strain. We identified variation in the active-site gorge and the sites interacting with gorge residues by comparing AChE1 3D structures of T. cinnabarinus, T. urticae, and humans, though their 3D structures were similar. Furthermore, the expression profile of T. cinnabarinus AChE, at the different developmental stages, was determined by quantitative real-time polymerase chain reaction; the transcript levels of AChE were higher in the larvae stage than in other stages. The changes in AChE expression between different developmental stages may be related to their growth habits and metabolism characteristics. This study may offer new insights into the problems of insecticide resistance and insecticide toxicity of nontarget species.


Subject(s)
Acetylcholinesterase/genetics , Tetranychidae/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Humans , Molecular Sequence Data , Protein Conformation , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Tetranychidae/growth & development
3.
Adv Mater ; 35(2): e2206272, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36255147

ABSTRACT

Highly spatial and angular precision in epitaxial-growth process is crucial for constructing organic low-dimensional heterostructures (OLDHs) with the desired substructures, which remains significant challenge owing to the unpredicted location of complex heterogeneous nucleation. Herein, a dynamic epitaxial-growth approach is developed along the tailored longitudinal/horizontal directions to create diverse OLDHs with hierarchical architectures. The controlled morphology evolution of seed crystals from kinetic to thermodynamic species is achieved via incrementally increasing the crystallization time from 0 to 600 s. Accordingly, the kinetic and thermodynamic seed crystals respectively present the specific lattice-matching crystal-planes of (100) and (011), which facilitates the longitudinal epitaxial-growth (LG) process for triblock heterostructures, and the horizontal epitaxial-growth (HG) process for axial-branch heterostructures. The dominant core/shell heterostructures are prepared via both LG and HG processes with a crystallization time of ≈30 s. Significantly, these prepared OLDHs realize the rationally polarized exciton conversion for optical logic gate application through the exciton conversion and photon propagation at the heterojunction. This strategy provides an avenue for the precise synthesis of OLDHs with anisotropy optical characters for integrated optoelectronics.

4.
Nanoscale ; 12(7): 4573-4585, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32043104

ABSTRACT

Nanoparticles (NPs) will inevitably interact with proteins and form protein coronas once they are exposed to biological fluids. This conventional model for nano-bio interactions has been used for over twenty years. Growing numbers of new nanomaterials are emerging every year. Among them, noble metal nanoclusters (NMNCs) are new types of fluorescent nanomaterials with considerable advantages in biomedical applications. Compared with NPs (typically >10 nm) like Au NPs, carbon nanotubes, etc., NMNCs have ultrasmall sizes (∼2 nm), so when NMNCs are exposed to biological milieu, will they form protein coronas like NPs? Due to a lack of characterization techniques for ultrasmall nanoparticles (USNPs), to date, studies on the binding stoichiometries of USNPs to proteins have been heavily hampered. To address this challenge, we combined the characteristics of various methods and selected human serum albumin (HSA) and transferrin (Trf) as model proteins to study their interactions with dihydrolipoic acid (DHLA) protected gold nanoclusters (DHLA-AuNCs). Steady-state fluorescence, transient fluorescence spectroscopy and isothermal titration calorimetry (ITC) were used to study the thermodynamic parameters (K, ΔH, ΔS, ΔG) and interaction mechanisms. The results showed that the intrinsic fluorescence of both proteins was quenched by DHLA-AuNCs, and the quenching process of HSA was an endothermic dynamic process. In contrast, the quenching process of Trf was an exothermic static process. The combination of ITC, agarose gel electrophoresis (AGE) and zeta potential showed that one HSA could bind 8 ± 1 DHLA-AuNCs and one Trf could bind 7 ± 2 DHLA-AuNCs, which was quite different from the conventional model of protein coronas. Based on these findings, the "protein complex" was termed for proteins upon binding with USNPs. Dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) showed that DHLA-AuNCs could induce the agglomeration of proteins. Circular dichroism (CD) and synchronous fluorescence spectroscopy showed that DHLA-AuNCs had a very minor effect on the secondary structures of HSA and Trf, which demonstrated the good biocompatibility of DHLA-AuNCs at the molecular scale. This work has shed light on a new interaction model beyond the protein corona, indicating a possible biological identity of USNPs.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Models, Chemical , Protein Corona/chemistry , Serum Albumin, Human/chemistry , Transferrin/chemistry , Humans , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL