Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39337595

ABSTRACT

Branched-chain hydroxy acids (BCHAs) as bioactive metabolites of Lactobacillaceae include 2-hydroxy isovaleric acid (HIVA), 2-hydroxy isocaproic acid (HICA), and 2-hydroxy-3-methyl isovaleric acid (HMVA). Combining targeted and untargeted metabolomics, this study elucidates differences in extracellular BCHA production in Limosilactobacillus fermentum, Ligilactobacillus salivarius, and Latilactobacillus sakei alongside comparing comprehensive metabolic changes. Through targeted metabolomics, BCHA production among 38 strains exhibited strain specificity, except for L. sakei, which showed significantly lower BCHA production. Explaining the lower production in L. sakei, which lacks the branched-chain amino acid (BCAA)-utilizing pathway, comparison of BCHA production by precursor reaction revealed that the pathway utilizing BCAAs is more dominant than the pathway utilizing pyruvate. Expanding upon the targeted approach, untargeted metabolomics revealed the effects of the reaction compound on other metabolic pathways besides BCHAs. Metabolism alterations induced by BCAA reactions varied among species. Significant differences were observed in glycine, serine, and threonine metabolism, pyruvate metabolism, butanoate metabolism, and galactose metabolism (p < 0.05). These results emphasize the importance of the synergy between fermentation strains and substrates in influencing nutritional components of fermented foods. By uncovering novel aspects of BCAA metabolism pathways, this study could inform the selection of fermentation strains and support the targeted production of BCHAs.


Subject(s)
Hydroxy Acids , Latilactobacillus sakei , Ligilactobacillus salivarius , Limosilactobacillus fermentum , Limosilactobacillus fermentum/metabolism , Hydroxy Acids/metabolism , Latilactobacillus sakei/metabolism , Ligilactobacillus salivarius/metabolism , Metabolic Networks and Pathways , Metabolomics/methods , Amino Acids, Branched-Chain/metabolism , Fermentation
2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542148

ABSTRACT

Bifidobacteria are probiotic microorganisms commonly found in the gastrointestinal tract, some of which are known to utilize linear arabino-oligosaccharides (AOS) as prebiotic carbohydrates. In general, the synergistic actions of exo-type α-l-arabinofuranosidases (ABFs) and endo-α-1,5-l-arabinanases (ABNs) are required for efficient arabinan degradation. In this study, the putative gene cluster for arabinan degradation was discovered in the genome of Bifidobacterium longum subsp. suis. It consists of a variety of genes encoding exo- and endo-hydrolases, sugar-binding proteins, ABC-binding cassettes, and transcriptional regulators. Among them, two endo-ABNs GH43 (BflsABN43A and BflsABN43B), two exo-ABFs GH43 (BflsABF43A and BflsABF43B), and an exo-ABF GH51 (BflsABF51) were predicted to be the key hydrolases for arabinan degradation. These hydrolase genes were functionally expressed in Escherichia coli, and their enzymatic properties were characterized. Their synergism in arabinan degradation has been proposed from the detailed modes of action. Extracellular endo-BflsABN43A hydrolyzes sugar beet and debranched arabinans into the short-chain branched and linear AOS. Intracellularly, AOS can be further degraded into l-arabinose via the cooperative actions of endo-BflsABN43B, exo-BflsABF43A with debranching activity, α-1,5-linkage-specific exo-BflsABF43B, and exo-BflsABF51 with dual activities. The resulting l-arabinose is expected to be metabolized into energy through the pentose phosphate pathway by three enzymes expressed from the ara operon of bifidobacteria. It is anticipated that uncovering arabinan utilization gene clusters and their detailed functions in the genomes of diverse microorganisms will facilitate the development of customized synbiotics.


Subject(s)
Arabinose , Bifidobacterium , Polysaccharides , Polysaccharides/metabolism , Multigene Family , Oligosaccharides , Glycoside Hydrolases/metabolism , Substrate Specificity
3.
Food Microbiol ; 116: 104364, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689426

ABSTRACT

The chemotaxonomic diversity of 20 Lactiplantibacillus plantarum strains was investigated using non-targeted metabolite profiling under different culture conditions. Multivariate and metabolic pathway analyses based on GC-MS and LC-MS/MS datasets showed that amino acid metabolism, especially 2-hydroxy acids, was enriched under aerobic conditions (AE), whereas fatty acid & sugar metabolism was increased under anaerobic conditions (AN). Based on the metabolite profiles, L. plantarum strains were clustered into three main groups (A, B, and C). Overall, 79 and 83 significantly discriminant metabolites were characterized as chemical markers of AE and AN growth conditions, respectively. Notably, alcohols were more abundant in group A whereas amino acids, peptides, purines, and pyrimidines were significantly higher in group C. 2-hydroxy acids and oxylipins biosynthesized through amino acid and fatty acid metabolism, respectively, were more abundant in groups A and B. Furthermore, we observed a strong correlation between the chemical diversity of L. plantarum groups and their antioxidant activity from metabolite extracts. We propose a non-targeted metabolomic workflow to comprehensively characterize the chemodiversity of L. plantarum strain under different culture conditions, which may help reveal specific biomarkers of individual strains depending on the culture conditions.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Anaerobiosis , Chromatography, Liquid , Hydroxy Acids , Fatty Acids
4.
BMC Microbiol ; 22(1): 190, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922769

ABSTRACT

Recent studies have demonstrated the potential of surface display technology in therapeutic development and enzyme immobilization. Utilization of lactic acid bacteria in non-GMO surface display applications is advantageous due to its GRAS status. This study aimed to develop a novel, non-GMO cell wall anchoring system for lactic acid bacteria using a cell-surface hydrolase (CshA) from Lactiplantibacillus plantarum SK156 for potential industrial and biomedical applications. Analysis of the CshA revealed that it does not contain any known classical anchor domains. Although CshA lacks a classical anchor domain, it successfully displayed the reporter protein superfolder GFP on the surface of several lactic acid bacteria in host dependent manner. CshA-sfGFP fusion protein was displayed greatest on Limosilactobacillus fermentum SK152. Pretreatment with trichloroacetic acid further enhanced the binding of CshA to Lm. fermentum. The binding conditions of CshA on pretreated Lm. fermentum (NaCl, pH, time, and temperature) were also optimized, resulting in a maximum binding of up to 106 CshA molecules per pretreated Lm. fermentum cell. Finally, this study demonstrated that CshA-decorated pretreated Lm. fermentum cells tolerates gastrointestinal stress, such as low pH and presence of bile acid. To our knowledge, this study is the first to characterize and demonstrate the cell-surface display ability of CshA. The potential application of CshA in non-GMO antigen delivery system and enzyme immobilization remains to be tested.


Subject(s)
Hydrolases , Limosilactobacillus fermentum , Cell Membrane/metabolism , Cell Wall/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Membrane Proteins/metabolism
5.
BMC Microbiol ; 22(1): 149, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35668352

ABSTRACT

BACKGROUND: Probiotic starters can improve the flavor profile, texture, and health-promoting properties of fermented foods. Tetragenococcus halophilus is a halophilic lactic acid bacterium that is a candidate starter for high-salt fermented foods. However, the species is known to produce biogenic amines, which are associated with neurotoxicity. Here, we report a probiotic starter strain of T. halophilus, EFEL7002, that is suitable for use in high-salt fermentation. RESULTS: EFEL7002 was isolated from Korean meju (fermented soybean) and identified as T. halophilus, with 99.85% similarity. The strain is safe for use in food as it is a non-hemolytic and non-biogenic amine producer. EFEL7002 is tolerant to gastrointestinal conditions and can adhere to Caco-2 cells. This strain showed antioxidant, anti-inflammatory, and protective effects against the human gut epithelial barrier. EFEL7002 grew well in media containing 0-18% NaCl showing maximum cell densities in 6% or 12% NaCl. CONCLUSIONS: T. halophilus EFEL7002 can be used as a health-promoting probiotic starter culture for various salty fermented foods.


Subject(s)
Probiotics , Sodium Chloride , Biogenic Amines/analysis , Caco-2 Cells , Enterococcaceae , Fermentation , Food Microbiology , Humans , Republic of Korea , Glycine max
6.
Compr Rev Food Sci Food Saf ; 19(1): 184-217, 2020 01.
Article in English | MEDLINE | ID: mdl-33319517

ABSTRACT

Fermented foods and alcoholic beverages have long been an important part of the human diet in nearly every culture on every continent. These foods are often well-preserved and serve as stable and significant sources of proteins, vitamins, minerals, and other nutrients. Despite these common features, however, many differences exist with respect to substrates and products and the types of microbes involved in the manufacture of fermented foods and beverages produced globally. In this review, we describe these differences and consider the influence of geography and industrialization on fermented foods manufacture. Whereas fermented foods produced in Europe, North America, Australia, and New Zealand usually depend on defined starter cultures, those made in Asia and Africa often rely on spontaneous fermentation. Likewise, in developing countries, fermented foods are not often commercially produced on an industrial scale. Although many fermented products rely on autochthonous microbes present in the raw material, for other products, the introduction of starter culture technology has led to greater consistency, safety, and quality. The diversity and function of microbes present in a wide range of fermented foods can now be examined in detail using molecular and other omic approaches. The nutritional value of fermented foods is now well-appreciated, especially in resource-poor regions where yoghurt and other fermented foods can improve public health and provide opportunities for economic development. Manufacturers of fermented foods, whether small or large, should follow Good Manufacturing Practices and have sustainable development goals. Ultimately, preferences for fermented foods and beverages depend on dietary habits of consumers, as well as regional agricultural conditions and availability of resources.


Subject(s)
Fermentation , Fermented Foods/analysis , Food Handling/methods , Food Microbiology , Alcoholic Beverages/analysis , Alcoholic Beverages/microbiology , Fermented Foods/microbiology , Nutritive Value
7.
Int J Mol Sci ; 20(23)2019 Nov 24.
Article in English | MEDLINE | ID: mdl-31771257

ABSTRACT

Flavonols, the second most abundant flavonoids in green tea, exist mainly in the form of glycosides. Flavonols are known to have a variety of beneficial health effects; however, limited information is available on their fate in the digestive system. We investigated the digestive stability of flavonol aglycones and glycosides from green tea under simulated digestion and anaerobic human fecal fermentation. Green tea fractions rich in flavonol glycosides and aglycones, termed flavonol-glycoside-rich fraction (FLG) and flavonol-aglycone-rich fraction (FLA) hereafter, were obtained after treatment with cellulase and tannase, respectively. Kaempferol and its glycosides were found to be more stable in simulated gastric and intestinal fluids than the derivatives of quercetin and myricetin. Anaerobic human fecal fermentation with FLG and FLA increased the populations of Lactobacilli spp. and Bifidobacteria spp. and generated various organic acids, such as acetate, butyrate, propionate, and lactate, among which butyrate was produced in the highest amount. Our findings indicate that some stable polyphenols have higher bioaccessibilities in the gastrointestinal tract and that their health-modulating effects result from their interactions with microbes in the gut.


Subject(s)
Feces/microbiology , Flavonols/metabolism , Tea/chemistry , Batch Cell Culture Techniques , Bifidobacterium/isolation & purification , Carboxylic Ester Hydrolases/metabolism , Cellulase/metabolism , Filaggrin Proteins , Flavonoids/chemistry , Flavonoids/metabolism , Flavonols/chemistry , Glycosides/chemistry , Glycosides/metabolism , Humans , Kaempferols/chemistry , Kaempferols/metabolism , Lactobacillus/isolation & purification , Quercetin/chemistry , Quercetin/metabolism , Tea/metabolism
8.
Int J Syst Evol Microbiol ; 67(7): 2225-2230, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28671527

ABSTRACT

The type strains of four subspecies of Leuconostocmesenteroides, L. mesenteroidessubsp. mesenteroides, L. mesenteroidessubsp. cremoris, L. mesenteroidessubsp. dextranicum and L. mesenteroidessubsp. suionicum, and strain DRC1506T, used as a starter culture for commercial kimchi production in Korea, were phylogenetically analyzed on the basis of their complete genome sequences. Although the type strains of the four L. mesenteroides subspecies and strain DRC1506T shared very high 16S rRNA gene sequence similarities (>99.72 %), the results of analysis of average nucleotide identity (ANI), in silico DNA-DNA hybridization (DDH) and core-genome-based relatedness indicated that they could form five different phylogenetic lineages. The type strains of L. mesenteroidessubsp. mesenteroides, L. mesenteroidessubsp. cremoris and L. mesenteroidessubsp. dextranicum and DRC1506T shared higher ANI and in silico DDH values than the thresholds (95-96 % and 70 %, respectively) generally accepted for different species delineation, whereas the type strain of L. mesenteroidessubsp. suionicum (DSM 20241T) shared lower ANI (<94.1 %) and in silico DDH values (<57.0 %) with the other four L. mesenteroides lineage strains, indicating that DSM 20241T couldn be reclassified as representing a different species. Here, we report that DRC1506T represents a novel subspecies within the species Leuconostoc mesenteroides, for which the name Leuconostoc mesenteroidessubsp. jonggajibkimchii subsp. nov. is proposed. The type strain is DRC1506T (=KCCM 43249T=JCM 31787T). In addition, L. mesenteroidessubsp. suionicum is also reclassified as Leuconostoc suionicum. sp. nov. (type strain DSM 20241T=ATCC 9135T=LMG 8159T=NCIMB 6992T).


Subject(s)
Leuconostoc mesenteroides/classification , Leuconostoc/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA
9.
Appl Microbiol Biotechnol ; 101(4): 1573-1580, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27888333

ABSTRACT

In enzymatic saccharification of agar, endo- and exo-agarases together with neoagarobiose hydrolase (NABH) are important key enzymes for the sequential hydrolysis reactions. In this study, a bifunctional endo/exo-agarase was fused with NABH for production of mono-sugars (D-galactose and 3,6-anhydro-L-galactose) from agar using only one fusion enzyme. Two fusion enzymes with either bifunctional agarase (Sco3476) or NABH (Zg4663) at the N-terminus, Sco3476-Zg4663 (SZ) and Zg4663-Sco3476 (ZS), were constructed. Both fusion enzymes exhibited their optimal agarase and NABH activities at 40 and 35 °C, respectively. Fusions SZ and ZS enhanced the thermostability of the NABH activity, while only fusion SZ showed a slight enhancement in the NABH catalytic efficiency (K cat/K M) from 14.8 (mg/mL)-1 s-1 to 15.8 (mg/mL)-1 s-1. Saccharification of agar using fusion SZ resulted in 2-fold higher mono-sugar production and 3-fold lower neoagarobiose accumulation when compared to the physical mixture of Sco3476 and Zg4663. Therefore, this fusion has the potential to reduce enzyme production cost, decrease intermediate accumulation, and increase mono-sugar yield in agar saccharification.


Subject(s)
Agar/metabolism , Disaccharidases/metabolism , Glycoside Hydrolases/metabolism , Disaccharidases/genetics , Disaccharides/metabolism , Galactose/metabolism , Glycoside Hydrolases/genetics
10.
Microb Cell Fact ; 15: 12, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26767787

ABSTRACT

BACKGROUND: Leuconostoc is a hetero-fermentative lactic acid bacteria, and its importance is widely recognized in the dairy industry. However, due to limited genetic tools including plasmids for Leuconostoc, there has not been much extensive research on the genetics and engineering of Leuconostoc yet. Thus, there is a big demand for high-copy-number plasmids for useful gene manipulation and overproduction of recombinant proteins in Leuconostoc. RESULTS: Using an existing low-copy plasmid, the copy number of plasmid was increased by random mutagenesis followed by FACS-based high-throughput screening. First, a random library of plasmids was constructed by randomizing the region responsible for replication in Leuconostoc citreum; additionally, a superfolder green fluorescent protein (sfGFP) was used as a reporter protein. With a high-speed FACS sorter, highly fluorescent cells were enriched, and after two rounds of sorting, single clone exhibiting the highest level of sfGFP was isolated. The copy number of the isolated plasmid (pCB4270) was determined by quantitative PCR (qPCR). It was found that the isolated plasmid has approximately a 30-fold higher copy number (approx. 70 copies per cell) than that of the original plasmid. From the sequence analysis, a single mutation (C→T) at position 4690 was found, and we confirmed that this single mutation was responsible for the increased plasmid copy number. The effectiveness of the isolated high-copy-number plasmid for the overproduction of recombinant proteins was successfully demonstrated with two protein models Glutathione-S-transferase (GST) and α-amylase. CONCLUSIONS: The high-copy number plasmid was successfully isolated by FACS-based high-throughput screening of a plasmid library in L. citreum. The isolated plasmid could be a useful genetic tool for high-level gene expression in Leuconostoc, and for extending the applications of this useful bacteria to various areas in the dairy and pharmaceutical industries.


Subject(s)
Leuconostoc/metabolism , Plasmids/genetics , Recombinant Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Leuconostoc/genetics , Polymerase Chain Reaction , Recombinant Proteins/genetics
11.
Regul Toxicol Pharmacol ; 76: 57-62, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26802535

ABSTRACT

White rose (Rosa hybrida) petals were extracted with ethanol (EtOH) or butanol (BuOH), and tested for their antimicrobial activities against two species of Gram-positive bacteria, six species of Gram-negative bacteria, and two species of fungi. On in vitro antimicrobial assays, Helicobacter pylori and Propionibacterium acnes were highly susceptible to white rose petal extract (WRPE)-EtOH and WRPE-BuOH, leading to minimal inhibitory concentrations of 100 and 10 µg/mL for H. pylori and 400 and 40 µg/mL for P. acnes, respectively. In in vivo experiments, C57BL/6 mice were infected with H. pylori by intragastric inoculation (1 × 10(8) CFU/mouse) 3 times, and orally treated twice a day for 14 days with WRPE-EtOH and WRPE-BuOH. On a CLO kit assay, 200 mg/kg of WRPE-EtOH fully eliminated the bacteria from the gastric mucosa, and the effect of 100 mg/kg of ethanol fraction was similar to pantoprazole (30 mg/kg), displaying 75% elimination. WRPE-BuOH was more effective, exhibiting 75% elimination at 20 mg/kg. The CLO test results were confirmed by bacterial identification. WRPE-EtOH and WRPE-BuOH inhibited the growth of various bacteria and fungi, and in particular, they effectively killed H. pylori and eliminated the bacteria from the mouse stomach. The results indicate that WRPE-EtOH and WRPE-BuOH could be good candidates for the elimination of H. pylori.


Subject(s)
Anti-Infective Agents/pharmacology , Butanols/chemistry , Ethanol/chemistry , Flowers/chemistry , Gastric Mucosa/drug effects , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Propionibacterium acnes/drug effects , Rosa/chemistry , Solvents/chemistry , Animals , Anti-Infective Agents/isolation & purification , Colony Count, Microbial , Disease Models, Animal , Dose-Response Relationship, Drug , Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/growth & development , Male , Mice, Inbred C57BL , Microbial Sensitivity Tests , Phytotherapy , Plants, Medicinal , Propionibacterium acnes/growth & development
12.
Biopolymers ; 103(6): 321-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25652688

ABSTRACT

The aim of this study was to isolate dextran-hydrolyzing bacteria from the human intestines and to identify their dextranolytic enzymes. For this, dextranase-producing microorganisms were screened from fecal samples by using blue dextran-containing media. Colonies producing a decolorized zone were isolated and they were grouped using RAPD-PCR. 16S rRNA gene sequencing analysis revealed the isolates were Bacteroides (B.) thetaiotaomicron, B. ovatus, B. vulgatus, B. dorei, B. xylanisolvens, B. uniformis, and Veillonella (V.) rogosae. Thin layer chromatography analysis showed that the dextranases exhibit mainly endo-type activity and produce various oligosaccharides including isomaltose and isomaltotriose. Zymogram analysis demonstrated that enzymes localized mainly in the cell membrane fraction and the molecular weight was 50-70 kDa. When cultured in a dextran-containing medium, all strains isolated in this study produced short-chain fatty acids, with butyric acid as the major compound. This is the first study to report that human intestinal B. xylanisolvens, B. dorei, and V. rogosae metabolize dextran utilizing dextranolytic enzymes.


Subject(s)
Bacteria/metabolism , Dextrans/metabolism , Intestines/microbiology , Dextranase/metabolism , Humans , Oligosaccharides/metabolism
13.
J Ind Microbiol Biotechnol ; 42(1): 49-55, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25475752

ABSTRACT

The aim of this study was to develop a competitive quantitative-PCR (CQ-PCR) method for rapid analysis of the population dynamics of lactic acid bacteria (LAB) in kimchi. For this, whole chromosome sequences of Leuconostoc mesenteroides, Lactobacillus plantarum, and Lb. brevis were compared and species-specific PCR primers targeting dextransucrase, 16S rRNA, and surface layer protein D (SlpD) genes, respectively, were constructed. The tested strains were quantified both in medium and kimchi by CQ-PCR and the results were compared with the data obtained using a conventional plate-counting method. As a result, the three species were successfully detected and quantified by the indicated primer sets. Our results show that the CQ-PCR method targeting species-specific genes is suitable for rapid estimation of LAB population to be used in the food fermentation industry.


Subject(s)
Fermentation , Lactobacillus plantarum/growth & development , Lactobacillus/growth & development , Leuconostoc/growth & development , Polymerase Chain Reaction/methods , Colony Count, Microbial , DNA Primers , DNA, Bacterial/analysis , Food Handling/methods , Food Microbiology , RNA, Ribosomal, 16S/analysis
14.
BMC Complement Altern Med ; 15: 345, 2015 10 05.
Article in English | MEDLINE | ID: mdl-26438076

ABSTRACT

BACKGROUNDS: In the present study, we aimed to examine the anti-aging properties of human placental hydrolysate (HPE) and dieckol (DE) from Ecklonia cava against free radical scavenging, muscle hypertrophy-related follistatin mRNA expression, amelioration of cognition-related genes and proteins, inhibition of collagenase-regulating genes, and elastinase activity. METHODS: The anti-aging effects were examined in human fibroblast (CCD986sk), mouse myoblast (C2C12), and neuroblastoma (N2a) cell models, by employing various assays such as 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) scavenging, hydroxyl radical-mediated oxidation, quantitative real-time polymerase chain reaction, enzyme activity, and immunocytochemistry observation. RESULTS: Our results show that HPE combined with DE (HPE:DE) strongly scavenged DPPH radicals and protected proteins against degradation by hydroxyl radical attack. HPE:DE effectively inhibited matrix metalloproteinase-1 expression, protein kinase C alpha expression, and elastinase activity. Furthermore, HPE:DE improved the expression of cognition-related genes (choline acetyltransferase and vesicular acetylcholine transporter). These events may proactively contribute to retard the aging processes and the abrupt physiological changes probably induced by mitochondrial dysfunction with aging. CONCLUSIONS: Based on these findings, we conclude that the combined treatment of HPE:DE may be useful for anti-aging therapy in which the accumulation of oxidative damage is the main driving force.


Subject(s)
Aging/drug effects , Benzofurans/pharmacology , Phaeophyceae/chemistry , Placenta/chemistry , Protein Hydrolysates/pharmacology , Aging/genetics , Aging/metabolism , Animals , Cell Line , Female , Free Radical Scavengers/pharmacology , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Mice , Oxidative Stress/drug effects , Pregnancy , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Reactive Oxygen Species/metabolism
15.
Food Sci Biotechnol ; 33(9): 2223-2231, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39130653

ABSTRACT

This study aimed to evaluate the survivability of Lactiplantibacillus plantarum PMO08 in the human gastrointestinal tract and its adaptability in the colon using in vitro models. After exposure to gastric and small intestinal conditions, the majority (92.70 ± 1.14%) of PMO08 was found to be damaged, as determined by confocal microscopy and flow cytometry. During in vitro colonic fermentation, PMO08 not only increased abundance up to 0.47 ± 0.04% compared with the control sample (0.00 ± 0.00%) at 24 h but also facilitated the growth of beneficial or commensal bacteria, thereby increasing the α-diversity indices. Additionally, PMO08 significantly elevated the levels of short-chain fatty acids (SCFAs) and various organic acids. Our results demonstrate that PMO08 possesses moderate viability under gastrointestinal conditions but exhibits superior probiotic activity in the colon.

16.
J Neurogastroenterol Motil ; 30(2): 194-207, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38576369

ABSTRACT

Background/Aims: This study aims to investigate the effect of a fermented rice drink with Lactiplantibacillus plantarum JSA22 on symptoms, blood tests, microbiomes, and fecal metabolites in patients with irritable bowel syndrome (IBS) who were overweight. Methods: Sixty overweight (body mass index ≥ 23 kg/m2) patients aged between 20 and 65 with IBS were enrolled. Patients were divided into 2 groups and administered either a fermented rice drink or an nonfermented rice drink for a month. The symptom questionnaire, blood samples, and stool samples for microbiome and metabolite were collected before and after the month of rice drink administration. The primary efficacy variable was the subject's global assessment of IBS symptoms. Results: In both groups, global IBS symptoms, including abdominal pain, bowel habit, urgency, and abdominal distension, improved significantly (P < 0.01). The abdominal bloating was more significantly improved in the fermented rice drink group than in the nonfermented rice drink group (P < 0.05). Significant changes were not observed in metabolic syndrome-related blood tests or fecal metabolites in either group. However, microbiome analysis showed significant differences in genus levels before and after consuming fermented rice drink, such as in Blautia in stool (P = 0.020) and Prevotella (P = 0.017) and Oribacterium (P = 0.018) in saliva. Conclusions: The fermented rice drink with L. plantarum JSA22 showed a beneficial effect in reducing abdominal distension in IBS patients. Bacteria that reduce visceral fat accumulation increased in the stool and saliva of patients who consumed fermented rice drinks.

17.
Nat Commun ; 15(1): 7447, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198444

ABSTRACT

Recent advancements in translational gut microbiome research have revealed its crucial role in shaping predictive healthcare applications. Herein, we introduce the Gut Microbiome Wellness Index 2 (GMWI2), an enhanced version of our original GMWI prototype, designed as a standardized disease-agnostic health status indicator based on gut microbiome taxonomic profiles. Our analysis involves pooling existing 8069 stool shotgun metagenomes from 54 published studies across a global demographic landscape (spanning 26 countries and six continents) to identify gut taxonomic signals linked to disease presence or absence. GMWI2 achieves a cross-validation balanced accuracy of 80% in distinguishing healthy (no disease) from non-healthy (diseased) individuals and surpasses 90% accuracy for samples with higher confidence (i.e., outside the "reject option"). This performance exceeds that of the original GMWI model and traditional species-level α-diversity indices, indicating a more robust gut microbiome signature for differentiating between healthy and non-healthy phenotypes across multiple diseases. When assessed through inter-study validation and external validation cohorts, GMWI2 maintains an average accuracy of nearly 75%. Furthermore, by reevaluating previously published datasets, GMWI2 offers new insights into the effects of diet, antibiotic exposure, and fecal microbiota transplantation on gut health. Available as an open-source command-line tool, GMWI2 represents a timely, pivotal resource for evaluating health using an individual's unique gut microbial composition.


Subject(s)
Feces , Gastrointestinal Microbiome , Health Status , Gastrointestinal Microbiome/genetics , Humans , Feces/microbiology , Metagenome , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Female
18.
Appl Microbiol Biotechnol ; 97(4): 1561-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23053084

ABSTRACT

Sufficient supply of NADPH is one of the most important factors affecting the productivity of biotransformation processes. In this study, construction of an efficient NADPH-regenerating system was attempted using direct phosphorylation of NADH by NADH kinase (Pos5p) from Saccharomyces cerevisiae for producing guanosine diphosphate (GDP)-L-fucose and ε-caprolactone in recombinant Escherichia coli. Expression of Pos5p in a fed-batch culture of recombinant E. coli producing GDP-L-fucose resulted in a maximum GDP-L-fucose concentration of 291.5 mg/l, which corresponded to a 51 % enhancement compared with the control strain. In a fed-batch Baeyer-Villiger (BV) oxidation of cyclohexanone using recombinant E. coli expressing Pos5p, a maximum ε-caprolactone concentration of 21.6 g/l was obtained, which corresponded to a 96 % enhancement compared with the control strain. Such an increase might be due to the enhanced availability of NADPH in recombinant E. coli expressing Pos5p. These results suggested that efficient regeneration of NADPH was possible by functional expression of Pos5p in recombinant E. coli, which can be applied to other NADPH-dependent biotransformation processes in E. coli.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Mitochondrial Proteins/metabolism , NADP/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Biotransformation , Cyclohexanones/metabolism , Genetic Engineering , Mitochondrial Proteins/genetics , Oxidation-Reduction , Phosphotransferases (Alcohol Group Acceptor)/genetics , Saccharomyces cerevisiae Proteins/genetics
19.
Antioxidants (Basel) ; 12(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37891929

ABSTRACT

This study investigates the synergistic impact of fermenting kale juice with Limosilactobacillus strains on its antioxidant and anti-inflammatory properties. Kale's rich nutrient profile, especially its flavonoids, offers potential health benefits. Probiotic lactic acid bacteria are employed in kale fermentation to enhance nutrient bioavailability and generate bioactive compounds. Kale juices fermented with L. reuteri EFEL6901 or L. fermentum EFEL6800 exhibited superior microbial growth. Free sugars and amino acids were converted to alcohols and organic acids, affecting the organoleptic and health-related properties of the product. In addition, fermentation increased quercetin and kaempferol content, indicating improved availability. Furthermore, the fermented juice exhibited notable antioxidant activity and suppressed nitric oxide (NO) production, revealing anti-inflammatory potential. Gene expression analysis confirmed reduced pro-inflammatory markers such as iNOS, COX-2, IL-6, and IL-1ß and elevated anti-inflammatory cytokines, including IL-10. This research highlights the promising potential of fermented kale juice, enriched with Limosilactobacillus strains, as a functional food with combined antioxidant and anti-inflammatory benefits.

20.
Front Microbiol ; 14: 1237442, 2023.
Article in English | MEDLINE | ID: mdl-37731927

ABSTRACT

Enterococcus faecium is a prevalent species found in fermented soybean products, known for its contributions to flavor development and inhibition of pathogenic microorganisms during fermentation. This study aims to provide comprehensive phenotypic and genomic evidence supporting the probiotic characteristics of E. faecium EFEL8600, a bacteriocin-producing strain isolated from Korean soy-meju. Phenotypic analysis revealed that EFEL8600 produced a peptide with inhibitory activity against Listeria monocytogenes, estimated to be 4.6 kDa, corresponding to the size of enterocins P or Q. Furthermore, EFEL8600 exhibited probiotic traits, such as resilience in gastrointestinal conditions, antioxidant and anti-inflammatory activities, and protection of the intestinal barrier. Safety assessments demonstrated no hemolytic and bile salt deconjugation activities. Genomic analysis revealed the presence of several genes associated with probiotic characteristics and bacteriocin production, while few deleterious genes with a low likelihood of expression or transferring were detected. Overall, this study highlights E. faecium EFEL8600 as a potent anti-listeria probiotic strain suitable for use as a starter culture in soymilk fermentation, providing potential health benefits to consumers.

SELECTION OF CITATIONS
SEARCH DETAIL